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1 Mathematical Reminders

1.1 Geometric Series

Claim:

If r 6= 1 then
m∑
k=0

rk =
rm+1 − 1

r − 1

Proof.

(r − 1)
m∑
k=0

rk = (r − 1)(rm + rm−1 + · · ·+ r + 1)

= (rm+1 + rm + · · ·+ r2 + r)− (rm + rm−1 + · · ·+ r + 1)

= rm+1 − 1

1.2 Basic logarithm identity

Claim:
If a, b, c > 0 then alogb c = clogb a

Proof.

logb c · logb a = logb a · logb c (because × is commutative)

logb(a
logb c) = logb(c

logba) (becausey logb x = logbx
y)

alogb c = clogb a (logb is injective: logb y = logbx =⇒ y = x)

1.3 Asymptotic notations

Big O Notation We say f(n) = O(g(n)) if there exists a positive constants c,N such that

0 ≤ f(n) ≤ cg(n) ∀n ≥ N.

We may refer to g(n) to be the asymptotic upper bound for f(n).

Big Omega Notation We say f(n) = Ω(g(n)) if there exists positive constants c,N such
that

0 ≤ cg(n) ≤ f(n) ∀n ≥ N.

Then, g(n) is said to be an asymptotic lower bound for f(n). It is useful to say that a
problem is at least Ω(g(n)).

Big Theta Notation We say f(n) = Θ(g(n)) if and only if

f(n) = O(g(n)) and f(n) = Ω(g(n)).

That is, both f and g have the same asymptotic growth.
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2 Stable Matchings and the Gale-Shapely Algorithm

2.1 Stable Matching Problem

Setting: Assume that you are running a speed dating agency and have n men and n women
as customers. They all attend a dinner party; after the party

• every man gives you his ranking of all the women present, and

• every woman gives you her ranking of all men present;

Task: Design an algorithm which produces a stable matching : a set of n pairs p = (m,w)
of a man m and a woman w so that the following the situation never happens:

for two pairs p = (m,w) and p′ = (m′, w′):

• man m prefers woman w′ to woman w, and

• woman w′ prefers man m to man m′.

Existence A stable matching exists for every possible collection of n lists of preferences
provided by all men, and n lists of preferences provided by all women.

Brute Force Takes n! ≈ (n/e)n time to form n couples.

2.2 Gale-Shapley Algorithm

Assumptions

• Produces pairs in stages, with possible revisions;

• A man who has not been paired with a woman will be called free.

• Men will be proposing to women.

• Women will decide if they accept a proposal or not.

Algorithm Start with all men free;
While there exists a free man who has not proposed to all women pick such a free man

m and have him propose to the highest-ranking woman w on his list to whom he has not
proposed yet;

If no one has proposed to w yet she always accepts and a pair p = (m,w) is formed;
Else she is already in a pair p′ = (m′, w);

If m is higher on her preference list than m′ the pair p′ = (m′, w) is deleted;
m′ becomes a free man;
Else m is lower on her preference list than m′;
the proposal is rejected and m remains free.
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Proving termination after n2

• In every round of the While loop one man proposes to one woman;

• every man can propose to a woman at most once;

• thus, every man can make at most n proposals;

• there are n men, so in total they can make ≤ n2 proposals

Thus the While loops can be executed no more than n2 many times.
With appropriate data structures, the Gale-Shapley alg. runs in O(n2).

Proving Production of Matching Proof (by contradiction).

• Assume that the While loop has terminated, but m is still free.

• This means that m has already proposed to every woman.

• Thus, every woman is paired with a man, because a woman is not paired with anyone
only if no one has made a proposal to her.

• But this would mean that n women are paired with all of n men so m cannot be free.

Contradiction!

Proving Stable Matching Proof (by contradiction). Note that during the While loop:

• a woman is paired with men of increasing ranks on her list;

• a man is paired with women of decreasing ranks on his list.

Assume now the opposite, that the matching is not stable;
Thus, there are two pairs p = (m,w) and p′ = (m′, n′) such that:

m prefers w′ over w; w′ prefers m over m′.

• m prefers w′ over w, so m has proposed to w′ before proposing to w;

• Since he is paired with w, woman w′ must have either:

– rejected him because she was already with someone she prefers, or

– dropped him later after a proposal from someone she prefers;

• In both cases she would now be with m′ whom she prefers over m.

Contradiction!

5



3 Divide and Conquer

3.1 Foundations for Divide and Conquer

Method

• Split the data into 2 or more parts (Divide)

• Solve the corresponding sub-problems by recursion (Conquer)

• Combine the solutions of the sub-problems into a solution.

Complexity (runtime) Assume:

• n is the input size

• we divide in a parts

• each part has size n
b

• Combining solutions costs f(n)

Then the runtime T of such an algorithm satisfies the equation

T (n) = aT
(n
b

)
+ f(n).

3.2 Integer Addition and Multiplication

Notation and Basic Methodology We let n be the number of bits in the integer.
Addition occurs by moving from the least to most significant bit, adding each bit at a time
in O(n). Multiplication is much of the same but, in O(n2).

The Karatsuba Trick This happens in O(nlog2 3).

3.3 Matrix multiplication

Brute Force Computation The product of multiplying two n×n matrices is a matrix of
size n× n, so n2 entries. For each entry in that product we do n multiplications. So matrix
product by brute force is Θ(n3).

Strassen’s Algorithm This happens in Θ(nlog2 7).

3.4 Master Theorem

Setup Master Theorem Let a ≥ 1 be an integer and b > 1 be a real number, f(n) > 0
be a non-decreasing function defined on the positive integers. Then, T (n) is the solution of
the recurrence

T (n) = aT
(n
b

)
+ f(n).
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Master Theorem

1. If f(n) = O(nlogb a−ε) for some ε > 0 then, T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a) then, T (n) = Θ(nlogb a log n).

3. If f(n) = Ω(nlogb a+ε) for some ε > 0 and, for some c < 1, and some n0,

af(
n

b
) ≤ cf(n)

holds for all n > n0 then, T (n) = Θ(f(n)).

If the conditions above do not hold then, the master theorem is not applicable.

3.5 Polynomial Interpolation

From Coefficient to Value Representation Every polynomial A(x) of degree d is
uniquely determined by its values at any d+ 1 distinct input values x0, x1, . . . , xd:

A(x)↔ {(x0, A(x0)), (x1, A(x1)), . . . , (xd, A(xd))}

For A(x) = adx
d + ad−1x

d−1 + · · ·+ a0, these values can be obtained via a matrix multipli-
cation: 

1 x0 x20 . . . xd0
1 x1 x21 . . . xd1
...

...
...

...
...

1 xd x2d . . . xdd



a0

a1
...
ad

 =


A(x0)
A(x1)

...
A(xd)


Such a matrix is called the Vandermonde matrix.

From Value to Coefficient Representation It can be shown that if xi are all distinct
then this matrix is invertible. Thus if, all xi are all distinct, given any valuesA(x0), A(x1), . . . , A(xd)
the coefficients a0,a1, . . . ,ad of the polynomial A(x) are uniquely determined:

a0

a1
...
ad

 =


1 x0 x20 . . . xd0
1 x1 x21 . . . xd1
...

...
...

...
...

1 xd x2d . . . xdd


−1

A(x0)
A(x1)

...
A(xd)


3.6 Counting Inversions

Brute Force An easy way to count the total number of inversions between two lists is by
looking at all pairs i < j of items on one list and determining if they are inverted in the
second list, but this would produce a quadratic time algorithm, T (n) = Θ(n2).
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Divide and Conquer Method The main idea is to tweak the Merge Sort algorithm, by
extending it to recursively both sort an array A and determine the number of inversions in
A. This can be done much more efficiently, in time Θ(n log n).

We split the array A into two equal parts Atop and Abottom. We may sort both Atop and
Abottom. Then, we seek to merge the arrays together. Every time we pull an element from
Abottom, such an element is in an inversion with all the remaining elements in Atop and we
add the total number of elements remaining in Atop to the total number of inversions.

3.7 Discrete Fourier Transform

For a = 〈a0, a1, . . . , an−1〉 a sequence of n real or complex numbers. We can form the
corresponding polynomial PA(x) =

∑n−1
j=0 ajx

j, and evaluate it at all complex roots of unity
of order n:

For all 0 ≤ k ≤ n− 1, we compute PA(wkn) = Ak =
n−1∑
j=0

ajw
jk
n .

The DFT of a sequence a is a sequence A of the same length.

Inverse Discrete Fourier Transform The IDFT of a sequence A = 〈A0, A1, . . . , An−1〉
is the sequence of values a = 〈a0, a1, . . . , an−1〉 = 〈Pa(1)

n
, Pa(ω

−1)
n

n
, . . . , Pa(ω

1−n
n )
n

〉.
We can show that IDFT(DFT(a) = a and DFT(IDFT(A)) = A.

Computation Brute force computation of the DFT takes Θ(n2) , same for IDFT. The
DFT of a sequence can be computed in Θ(n lg n) using the FFT (as can be the IDFT).

3.8 Convolution

(Linear) Convolution

A ? B = 〈c0, c1, . . . , cn+m〉 where cj =
∑
i+k=j

aibk.

Interpretation in terms of Polynomials Form the two corresponding polynomials and
multiply them C(x) = A(x) ·B(x)

A(x) =
n∑
i=0

aix
i B(x) =

m∑
k=0

bkx
k

C(x) =
m+n∑
j=0

(∑
i+k=j

aibk

)
xj =

n+m∑
j=0

cjx
j

The sequence of coefficients of the product polynomial is the convolution of the coefficients
of the factors: 〈c0, c1, . . . , cn+m〉 = 〈a0,a1, . . . ,an〉 ? 〈b0, b1, . . . , bm〉.

For a more visual understanding watch: 3Blue1Brown’s video on convolutions here.
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4 Greedy Algorithms

4.1 Foundations for The Greedy Method

Method Search for an admissible solution of maximal reward (/minimal cost)

• Introduce problem elements

• Establish which combinations of elements are admissible

• Define a quality measure on problem’s elements

• Build a solution step by step by adding elements of highest quality

Optimality proof method (exchange argument)

• Pick any solution S

• morph it by swapping elements with higher quality ones

• show that any swap leads to a solution with higher reward

• stop when we arrive at the greedy solution G

• Conclude that the reward G is larger than S

4.2 Activity Selection Problem

Setting A list of activites ai, (1 ≤ i ≤ n) with starting times si and finishing times fi. No
two activities can take place simultaneously.

Task Find a maximum size subset of compatible activities.

Solution Among the activities which do not conflict with the previously chosen activities
always chose the one with the earliest end time.

Proof Claim: any solution S has ≤ number of activities than the greedy solution G.

1. Find the first place where the chosen activity violates the greedy choice.

2. Show that replacing that activity with the greedy choice produces a non-conflicting
selection S ′ with the same number of activities.

3. Continue until all activities match those in the greedy solution G.

Complexity We sort activities using their finishing times in increasing order in O(n log n)
time. Then loop through all activities linearly for a total time of O(n log n).
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Setting A list of activities ai, (1 ≤ i ≤ n) with starting times si and finishing times
fi = si + d. Thus, all activities are of the same duration. No two activities can take place
simultaneously.

Task Find a subset of compatible activities of maximal total duration.

Solution Since all activities are of the same duration, this is equivalent to finding a selec-
tion with the largest number of non-conflicting activities, i.e., the previous problem.

A greedy strategy no longer works - we need a more sophisticated technique.

4.3 Dijkstra’s Shortest Path Algorithm

Updating our Heap Data Structure We will use heaps represented by arrays; the left
child of A[i] is stored in A[2i] and the right child in A[2i+ 1]. We will store in heaps vertices
of graphs with key computed in various ways; if a graph has n vertices we will label them
with positive integers 1 to n. Thus every element of A is of the form (i, k(i)) where k(i) is
the key of element i.

Besides the array A which represents the heap, we will use another array P of the same
length which stores the position of elements in the heap; thus A[P [i]] = (i, k(i)). Changing
the key of an element i is now an O(lg n) operation: we look up its position P [i] in A, change
the key of the element in A[P [i]] and then perform the Heappify operation to make sure the
Heap property is being preserved.

Setting Let G = (V,E) be a directed graph with non-negative weight w(e) ≥ 0 assigned
to each edge e ∈ E. We are also given a vertex v ∈ V . For simplicity, we assume that any
u ∈ V can be reached from v.

Task Find for every u ∈ V the shortest path from v to u.

Algorithm Starting from a set of vertices S = {v} which contains a single source vertex.
At each stage of construction we add the element u ∈ V \ S which has the shortest path
from v to u with all intermediate vertices already in S.

Correctness Assume that there exists a shorter path from v to u in G. By our choice of
u such a path cannot be entirely in S. Let z be the first vertex outside S on such a shortest
path. But then the path from v to such z would be shorter than the path from v to u,
contradicting our choice of u.

Efficient Implementation

1. All vertices expect v placed in heap with additional position array, weights w(u, v) if
(v, u) ∈ E or ∞ as the key.

2. Key of each element u will be updated with length lhS,v(u) of the shortest path from
v to u which has all intermediate vertices on such a path in S.
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3. Pop the element u from the priority queue with smallest key and add to S.

4. For all elements z ∈ V \ S for which (u, z) ∈ E, if lhS,v(u) + w(u, z) < lhs,v(z) update
key of z to lhS,v(u) + w(u, z).

Complexity For a graph with n vertices and m edges, each edge is inspected only once,
and popping an element with the smallest key and updating a vertex key takes O(lg n) many
steps each. So in total, the algorithm runs in O(m lg n) time.

4.4 Huffman Code

Encoding Texts Given a set of symbols you want to encode these symbols using binary
strings, so that sequences of such symbols can be decoded in an unambiguous way.

Fixed-width Encodings Reverse bit strings of equal and sufficient length, given the
number of distinct symbols to be encoded. This is the main idea behind the ASCII code.

Towards Variable-Width Encoding The previous method is not economical: all sym-
bols have codes of equal length. One would prefer an encoding in which frequent symbols
have short codes while infrequent ones can have longer codes.

Prefix Code The previous method was unable to partition a bitstream uniquely into
segments. To do this we use a prefix code. A prefix code is a map from symbols to bit
sequences such that no code of a symbol is a prefix of a code for another symbol.

The Huffman Code Given the frequencies of each symbol, design an optimal prefix code,
i.e. a prefix code such that the expect length of an encoded text is as small as possible.

4.5 Union-Find

Three Operations

• MakeUnionFind(S) - Given a set S returns a structure in which all elements are placed
into distinct singleton sets. Runs in O(n) time where n = |S|.

• Find(v) - Given a vertex v, returns the set to which v belong. Runs in O(1) time.

• Union(A, B) - Given two sets A,B, changes the data structure by replacing sets A
and B with the set A ∪ B. Initial sequence of k consecutive Union operations runs in
time O(k lg k).

– Run time of single Union not given. This approach is amortized analysis.

– inital sequence of k Union operations means we start with all sets being singletons
and then apply k Union operations.

– consecutive sequence of Union means a sequence of Union operations possibly
interspered with some FIND operations but not other Union operations not be-
longing to the considered sequence of k Union operations.
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Implementation The simplest implementation of the UF data structure consists of:

1. an array A such that A[i] = j means that i belongs to set labeled by j;

2. an array B such that B[i] contains the number of elements in the set i and pointers to
the first and last elements of the list of elements in the set i.

Union(i, j) if defined as follows: if the set labeled by i has ≥ elements than the set labeled
by j then labels in array A of all elements in the set labeled by j is changed to i and array
B is updated accordingly. Else do the opposite.

Complexity Any sequence of k initial consecutive Union operations can touch at most 2k
elements of S. Every Union operation at least doubles the size of the set and could change
fewer than lg 2k many times. Thus any sequence of k initial consecutive Union operations
will have in total fewer than 2k lg 2k many label changes. Thus, every sequence of k inital
consecutive Union operations has time complexity of O(k lg k).

4.6 Minimum Spanning Trees

Let G = (V,E) be a connected undirected graph.

Spanning Tree A spanning tree is a subgraph T = (V,ET ) of G such that T does not
contain any cycle and is connected.

Minimum Spanning Tree If G is a (edge-) weighted graph, then a minimum spanning
tree is a spanning tree of minimum weight.

Kruskal’s Algorithm Sort all edges E in non-decreasing order by weight. Then, starting
from the lowest weight to highest, if adding an edge will not result in a cycle, then add it to
the graph. Otherwise, discard that edge. The process terminates when the list of all edges
has been exhausted.

Correctness (Spanning Tree) Let T be the output of the algorithm, we know that T does
not contian any cycle. Assume there are two or more connected components C1 and C2. G is
connected, so there are some edges connecting C1 to C2 in G. The first of such edges would
have been added to T because it would not create any cycle in T . So T is a spanning tree.

(Minimality) We consider the case where all weights are distinct. Let T be the output of
KA. Consider a spanning tree T ′ distinct from T . Let e = {u, v} be the smallest-weight
edge in T that is not in T ′. T ′ is spanning so there exists a path P from u to v. T has no
cycles, so there exists an edge f ∈ P that is not in T . Let T ′′ = (V, {e} ∪ ET ′ \ {f}); it is
a spanning tree. w(e) < w(f) because otherwise KA would have added f to T instead of e.
Furthermore, T ′′ weighs less than T ′, so T ′ is no an MST. G has an MST and any T ′ 6= T is
not an MST, so T is an MST.
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Implementation The Union-Find data structure lets us efficiently implement Kurskal’s
algorithm on graph G = (V,E) with n vertices and m edges. We first sort m edges which
takes O(m lgm). Since m ≤ n2 this step also takes O(m lg n2) = O(m log n). For the algo-
rithm we making connected components and merge them into a single connected component
which is the same as Union-Find.

For each edge e = (v, u) we use two Find operations Find(u) and Find(v) to determine
if they belong in the same component. If they are we add edge e = (u, v) to the spanning
tree and perform Union(i, j) to place u and v into the same connected component.

In total we perform 2m Find operations, each costing O(1), in total coasting O(m). We
also perform n− 1 Union operations which cost O(n lg n). In total, together with the initial
sorting the time complexity is O(m log n).

5 Maximum Flow

5.1 Flow Networks

Flow Network A flow network G = (V,E) is a directed graph where each edge e =
(u, v) ∈ E has a positive integer capacity c(u, v) > 0.

There are two distinguished vertices. A source s and sink t. There are no outgoing edges
for a sink and likewise, no incoming edges for a source.

Flow A flow in G is a function f : E → R+, f(u, v) ≥ 0. which satisfies

1. Capacity Constraints: for all edges e(u, v) ∈ E we require f(u, v) ≤ c(u, v).

2. Flow Conservation: For all v ∈ V \ {(s, t)}, we require∑
(u,v)∈E

f(u, v) =
∑

(v,w)∈E

f(v, w).

That is, the incoming flow must be equal to the outgoing flow.

Value of flow The value of the flow is defined as

|f | =
∑

v:(s,v)∈E

f(s, v) =
∑

v:(v,t)∈E

f(v, t).

Residual Flow Network The residual flow network for a flow network with some flow in
it: the network with the leftover capacities.

Augmenting Path Residual flow networks can be used to increase the total flow through
the network by adding an augmenting path.

The capacity of an augmenting path is the capacity of its ”bottleneck” edge, i.e., the
capacity of the smallest capacity edge on that path.

We should then send that amount of flow along the augmenting path, recalculating the
flow and the residual capacities for each edge used.
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5.2 Ford-Fulkerson Algorithm

Ford-Fulkerson algorithm for finding maximal flow in a flow network:

• Keep adding flow through new augmenting paths for as long as it is possible.

• When there are no more augmenting paths, you have achieved the largest possible flow
in the network.

Cut A cut in a flow network is any partition of the vertices of the underlying graph into
two subsets S and T such that:

1. S ∪ T = V

2. S ∩ T = ∅

3. s ∈ S and t ∈ T .

Capacity of a Cut The capacity c(S, T ) of a cut (S, T ) is the sum of capacities of all
edges leaving S and entering T , i.e.

c(S, T ) =
∑

(u,v)∈E

{c(u, v) : u ∈ S & v ∈ T}

Note that the capacities of edges going in the opposite direction, i.e., from T to S do not
count.

Flow of Cut The flow through a cut f(S, T ) is the total flow through edges from StoT
minus the total flow through edges from T to S:

f(S, T ) =
∑
u,v

∈ E{f(u, v) : u ∈ S & v ∈ T} −
∑

(u,v)∈E

{f(u, v) : u ∈ T & v ∈ S}

Clearly, f(S, T ) ≤ c(S, T ) because for every edge (u, v) ∈ E we assumed f(u, v) ≤ c(u, v)
and f(u, v) ≥ 0.

Max Flow Min Cut Theorem The maximal amount of flow in a flow network is equal
to the capacity of the cut of minimal capacity.

Edmonds-Karp Algorithm The Edmonds-Karp algorithm improves the Ford-Fulkerson
algorithm in a simple way: always choose the shortest path from source s to the sink t,
where the “shortest path” means the fewest number of edges, regardless of their capacities
(i.e., each edge has the same unit weight). This algorithm runs in time O(|V ||E|2).

The fastest max flow algorithm to date, an extension of the PREFLOW-PUSH algorithm
runs in time |V |3.
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5.3 Solving Different Problems with Maximum Flow

5.3.1 Networks with Multiple Sources and Sinks

Flow networks with multiple sources and sinks are reducible to networks with a single source
and single sink by adding a “super-sink” and “super-source” and connecting them to all
sources and sinks, respectively, by edges of infinite capacities.

5.3.2 Maximum Matching In Bipartite Graphs

We will consider bipartite graphs; i.e., graphs whose vertices can be split into two subsets,
L and R such that every edge e ∈ E has one end in the set L and the other in the set R.

Matching A matching in a graph G is a subset M of all edges E such that each vertex of
the graph belongs to at most one of the edges in the matching M .

Maximum Matching A maximum matching in a bipartite graph G is a matching con-
taining the largest possible number of edges.

We turn a Maximum Matching problem into a Max Flow problem by adding a super
source and a super sink, and by giving all edges a capacity of 1.

Note how the residual flow networks allow rerouting the flow in order to increase the
total throughput.

5.3.3 Max Flow with Vertex Capacities

Sometimes not only the edges but also the vertices vi of the flow graph might have capacities
C(vi), which limit the total throughput of the flow coming to the vert (and, consequently,
also leaving the vertex): ∑

e(u,v)∈E

f(u, v) =
∑

e(v,w)∈E

f(u,w) ≤ C(v).

Such a case is reduced to the case where only edges have capacities by splitting each vertex
v with limited capacity C(v) into two vertices vin and vout so that all edges coming into v go
into vin, all edges leaving v now leave vout and by connecting the new vertices vin and vout
with an edge e∗ = (vin, vput) with capacity equal to the capacity of the original vertex v.

5.4 Applications of Max Flow Algorithm

5.4.1 Allocation: Movie Rental

Problem Assume you have a movie rental agency. At the moment you have k movies in
stock, with mi copies of the movie i. Each of n customers can rent out at most 5 movies at
a time. The customers have sent you their preferences which are a list of movies they would
like to see. Your goal is to dispatch the largest possible number of movies.
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5.4.2 Multiple Sources and Sinks: Cargo Allocation

Problem The storage space of a ship is in the form of a rectangular grid of cells with n
rows and m columns. Some of the cells are taken by support pillars and cannot be used
for storage, so they have 0 capacity. You are given the capacity of every cell; cell in row ri
and column cj has capacity C(i, j). To ensure the stability of the ship, the total weight in
each row ri must not exceed C(ri) and the total weight in each column cj must not exceed
C(cj). Find how to allocate the cargo weight to each cell to maximise to total load without
exceeding the limits per column, limits per row and limits per available cell.

5.4.3 Vertex Capacities: Disjoint Paths

Problem You are given a connected, directed graph G with N vertices. Out of these
N vertices k are painted red, m are painted blue, and the remaining N − k − m > 0 of
the vertices are black. Red vertices have only outgoing edges and blue vertices have only
incoming edges. Your task is to determine the largest possible number of disjoint (i.e., non-
intersecting) paths in this graph, each of which starts at a red vertex and finishes at a blue
vertex.

6 Dynamic Programming

6.1 Foundations for Dynamic Programming

Method Build an optimal solution to the problem from optimal solutions for subproblems.

• Subproblems are chosen in a way that allows recursive construction of optimal solutions
to problems from optimal solutions to smaller-size problems.

• The efficiency of DP comes from the fact that the sets of subproblems needed to solve
large problems heavily overlap; each subproblem is solved only once and its solution is
stored in a table for multiple uses for solving many larger problems.

6.2 Activity Selection II

Setting A list of activities ai, 1 ≤ i ≤ n with starting time si and finishing times fi. No
two activities can take place simultaneously.

Task Find a subset of compatible activities of maximal total duration.

Algorithm We start by sorting these activities by their finishing time into a non-decreasing
sequence, so will assume that f1 ≤ f2 ≤ · · · ≤ fn.

For 1 ≤ i ≤ n, the Subproblem P (i) is to find a subset Si of activitiesAi = {a1, a2, . . . , ai}
such that:

1. Si consists of non-overlapping activities;
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2. Si ends with activity ai;

3. Si is of maximal total duration among all subsets of Ai satisfying 1 and 2.

Let T (i) be the total duration of the solution Si of the subproblem P (i).
For S1 we choose a1l thus T (1) = f1 − s1;
Recursion: assuming that we have solved subproblems for all j < i and stored them in a
table, we let

T (i) = max{T (j) + fi − si | 1 ≤ j < i, fj < si}

Correctness Let the optimal solution of subproblem P (i) be the sequence Si = (ak1 , ak2 , . . . akm−1 , akm)
where km = i.

We claim that the truncated subsequence S ′ = (ak1 , ak2 , . . . , akm−1 is an optimal solution
to the subproblem P (km−1, where km−1 < i.

If there were a sequence S∗ of a larger total duration of sequence S ′ and also ending with
activity akm−1 , we could obtain a sequence Ŝ by extending the sequence S∗ with activity
akm and obtain a solution for subproblem P (i) with a longer total duration than the total
duration of sequence Si, contradicting the optimally of Si. Continuing with the solution of
the problem, we now let

Tmax = max{T (i) | i ≤ n}.

We can now reconsturct the optimal sequence which solves our problem from the table of
partial solutions, because in the ith slot of the table, besides T (i), we also store j such that
the optimal solution of P (i) extends the optimal solution of subproblem P (j).

If such optimal solution ends with activity ak, it would have been obtained as the optimal
solution of problem P (k).

Complexity

1. Sorting takes O(n lg n

2. We need to solve n subproblems. Each subproblem requires examining the preceding
subproblems and their optimal solutions. This takes O(n2).

3. We need O(n) to compute Tmax and conclude.

Thus, the overall time is O(n2).

6.3 Longest Increasing Subeqence

Setting Given a sequence of n real numbers A[1 . . . n].

Task Determine a subsequence (not necessarily contiguous) of maximum length in which
the values in the subsequence are strictly increasing.
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Algorithm For each 1 ≤ i ≤ n Subproblem P (i): Find a subsequence of the sequence
A[1 . . . i] of maximum length in which the values are strictly increasing and which ends with
A[i].

Recursion: Assume we have solved all the subproblems for j < i; We now look for all
A[m] such that m < i and such that A[m] < A[i];

Among those, we pick m which produced the longest increasing subsequence ending with
A[m] and extend it with A[i] to obtain the longest increasing subsequence which ends with
A[i].

Correctness We claim that truncating the optimal solution for P (i) will produce an op-
timal solution for P (m) and follow a very similar proof to the activity selection problem.

Time Complexity This algorithm runs in O(n2). This problem can be done in O(n log n)
time.

6.4 Integer Knapsack Problem (without Duplicates)

Setting You have n items (some of which can be identical); item Ii is of weight wi and
value vi. You also have a knapsack of capacity C.

Task Chose a combination of available items which all fit in the knapsack and whose value
is as large as possible.

Algorithm For all 1 ≤ i ≤ n and 0 ≤ c ≤ C, the subproblems P (i, c) is of the form
Choose from items I2, I2, . . . , Ii a subset which fits in a knapsack of capacity c and is of

the largest possible total value.
Let m(i, c) be this largest value.

• This is an example of ”2D” recursion; we are filling a table of size n× C, row by row.

• Fix now i ≤ n and c ≤ C and assume we have solved the subproblems for:

1. all j < i and all knapsacks of capcities from 1 to C;

2. for i we have solved the problem for all capactities d < c.

We now have two options: either we take item Ii or we do not. So we look at optimal
solutions m(i− 1, c− wi) and m(i− 1, c).

m(i, c) = max(m(i− 1, c− wi) + vi,m(i− 1, c))

Final solution will be given by m(n,C).

Edge Cases

• What happens if c− wi < 0? Knapsack capacity exceeded!

• What if i− 1 < 1? No more items to be taken!

Let m(i, c) = −∞ for c < 0. Let m(0, c) = 0 for c ≥ 0.
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6.5 Balanaced Partition

Setting You have a set S of n integers.

Task Partition S into two subsets S1, S2 such that you minimise |s1− s2|, where s1 and s2
denote the sums of the elements in each of the two subsets.

Solution Let s be the total num of all integers in the set; consider the Knapsack problem
(without duplicates) with the knapsack of size s/2 and with each integer xi of both size and
value equal to xi.

Claim The best packing of such knapsack produces optimally balanced partition, with S1

being all the integers in the knapsack and S2 all the integers left out of the knapsack.
Since s = s1 + s2 we obtain 2( s

2
− s1 = s − 2s1 = s2 − s1. Thus, minimising s

2
− s1 will

minimise s2 − s1. So, all we have to do is find the subset of these numbers with the largest
possible total sum which fits inside a knapsack of size s/2.

6.6 Assembly Line Scheduling

Setting Two assembly lines with workstations for n jobs.

• Executing the kth job on assembly line i takes aik units of time to complete i ∈
{1, 2}, (1 ≤ k ≤ n).

• Moving the product from stations k on assembly line i to stations k+ 1 on line (2− i)
takes tik units of time.

• Bringing an unfinished product to assembly line i takes ei time.

• Shipping a finished product off assembly line i takes xi time.

Task Find a fastest way to assemble a product using both lines as necessary.

Subproblem For 1 ≤ k ≤ n and i ∈ {1, 2}, the subproblem P (i, k) is to find the minimal
amount of time m(i, k) needed to finish the first k jobs, such that kth job is finished on the
kth workstation on the ith line.

• We solve P (1, k) and P (2, k) by simultaneous recursion on k:

• Inital step: m(1, 1) = e1 + a11 and m(2, 1) = e2 + a21.

• Heredity step

m(1, k + 1) = min{m(1, k) + a1k+1,m(2, k) + t2k + a1k+1}

m(2, k + 1) = min{m(2, k) + a2k+1,m(1, k) + t1k + a2k+1}

• Finally, the overall solution is opt = min{m(1, n) + x1,m(2, n) + x2}
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Shortest Path Solution

• Split every station into 2 vertices, ”station entry” and ”station exit”.

• Cost aik between the entry and the exit of a station.

• Cost 0 between exit and entry of consecutive stations on the same line.

6.7 Pseudo-Polynomial Time

6.7.1 Making Change

Setting You are given n types of coin denominations of values v1 < v2 < · · · < vn (all
integers). Assume v1 = 1, so that you can always make change for any integer amount.
Assume that you have an unlimited supply of coins of each denomination.

Task Give an algorithm which makes change for any given integer amount C with as few
coins as possible.

Main Idea

• Consider an optimal solution Si for amount i ≤ C.

• If i > 0, then Si includes at least one coin, say, of denomination vk.

• Removing this coin must produce an optimal solution for the amount i − vk, Si − vk,
again by our cut-and paste argument.

• We do not know which coins Si includes, so we try all the available coins and then pick
k for which Si− vk uses the fewest number of coins.

Algorithm

• For O ≤ i ≤ C, subproblem P (i) is to make change for amount i with as few coins as
possible. Let m(i) be the number of coins required.

• If i = 0 the solution is trivial: you don’t need any coin, m(0) = 0.

• Assume optimal solution for amounts j < i and find an optimal solution for amount i.
That is, m(i) = min{m(i− vk) + 1 | 1 ≤ k ≤ n, i− vk ≥ 0}.

• Don’t forget the condition i− vk ≥ 0 or else define m(i) =∞ for i < 0.

Complexity The time complexity of our algorithm is Θ(nC).
Length of input: O(lgC + lg v1 + lg v2 + · · · lg vn) = O(n lgC).
Our algorithm is NOT polynomial in the length of the input! But this is the best that we
have at out disposal...
Because Making Change is an NP-Complete Problem.
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6.7.2 Integer Knapsack Problem with Duplicates

Setting You have n types of items; all items of kind i are identical and of weight wi and
value vi. You also have a knapsack of capacity C.

Task Choose a combination of items which all fit in the knapsack and whose value is as
large as possible. You can take any number of items of each kind.

Solution DP recursion on the capacity C of the knapsack. We build a table of optimal
solutions for all knapsacks of capacities i ≤ C. Assume we have solved the problems for all
knapsacks of capacities j < i. We now look at optimal solutions m(i−wm for all knapsacks
of capacities i − wm for all 1 ≤ m ≤ n. Chose the one for which m(i − wm) + vm is the
largest. Add to it the item m to obtain a packing of a knapsack of size i of the highest
possible value. Thus, m(i) = max{m(i − wm) + vm : 1 ≤ m ≤ n}. After C many steps we
obtain m(C) which is what we need.

Again, our algorithm is NOT polynomial in length of the input.

6.7.3 Pseudo-Polynomial Time

Consider a problem with numerical input of magnitude N and optionally non-numerical
input size n. A pseudo-polynomial algorithm to solve this problem is an algorithm that runs
in time O(P (n)P ′(N)) where P and P ′ are polynomials.

Example: Making Change Numerical input: the denominations v1, . . . , vn and the tar-
get C. So the magnitude is N = |C| +

∑
|vi|. All input is numerical and our proposed

algorithm runs in O(N) so it is pseudo-polynomial.

6.8 Shortest Path Algorithms

6.8.1 Bellman-Ford: Shortest Paths with Negative Weights

Setting A directed weighted graph G = (V,E) with weights which can be negative, but
without cycles of negative total weight and a vertex s ∈ V .

Task Find the shortest path from vertex s to every other vertex t.

Solution Since there are no negative weight cycles, the shortest path cannot contain cycles,
because a cycle can be excised to produce a shorter path. Thus, every shortest path can
have at most |V | − 1 edges.
Subproblems: For every v ∈ V and every i, (1 ≤ i ≤ n − 1), let opt(i, v) be the length of
a shortest path from s to v which contains at most i edges. Our goal is to find for every
vertex t ∈ G the value of opt(n− 1, t) and the path which achieves such a length.

Note that if the shortest path from a vertex v to t is (v, p1, p2, . . . , pk, t) then (p1, p2, . . . , pk, t)
must be the shortest path from p1 to t and (v, p1, p2, . . . , pk) must also be the shortest path
from v to pk.
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Let us denote the length of the shortest path from s to v among all paths which contain
at most i edges by opt(i, v) and let pred(i, v) be the immediate predecessor of vertex v on
such shortest path.
Recursion:

opt(i, v) = min(opt(i− 1, v),min
p∈V
{opt(i− 1, p) + w(e(p, v))};

pred(i, v) =

{
pred(i− 1, v) if minp∈V {opt(i− 1, p) + w(e(p, v))} ≥ pred(i− 1, v)

arg minp∈V {opt(i− 1, p) + w(e(p, v))} otherwise

(here w(e(p, v)) is the weight of the edge e(p, v) from vertex p to vertex v.) Algorithm
produces shortest paths from s to every other vertex in the graph.

Time Complexity Computation opt(i, v) runs in time O(|V | × |E|), because i ≤ |V | − 1
and for each v, min is taken over all edges e(p, v) incident to v; thus in each round all edges
are inspected.

6.8.2 Floyd-Warshall

Let again G = (V,E) be a directed weighted graph where V = {v1, v2, . . . , vn} and where
weights w(e(vp, vq)) of edges e(vp, vq) can be negative, but there are no negative weight cycles.
We can use a somewhat similar idea to obtain the shortest paths from every vertex vp to
every vertex vq (including back to vp).

Let opt(k, vp, vq) be the length of the shortest path from a vertex vp to a vertex vq such
that all intermediate verticies are among verticies {v1, v2, . . . , vk}, (1 ≤ k ≤ n). Then

opt(k, vp, vq) = min{opt(k − 1, vp, vq), opt(k − 1, vp, vk) + opt(k1, vk, vq)}

Thus, we gradually relax the constraint that the intermediate vertices have to belong to
{v1, v2, . . . , vk}. The algorithm runs in time |V |3.

7 Reductions

7.1 Decision Problems

A decision problem is a problem with a YES/NO answer.

Certificates and Counter-Example For a given problem P and a given instance x,

• a certificate for x is data that lets us verify easily that P (x) =YES.

• a counter-example for x is data that lets us verify easily that P (x) =NO.

Polynomial Time Algorithms A decision problem A is in polynomial time if there
exists a polynomial time algorithm that solves it. An algorithm runs in polynomial time
for every input if it terminates in polynomially many steps in the length of the input (i.e.
T (n) = O(nk) where k is a natural number and n is the size of the input). We denote this
by A ∈ P.
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Input The length of an input is the number of symbols needed to describe the input
precisely.

Reductions Decision problem U is reducible to dec. prob. V if there is a function f such
that

1. f maps instances of U into instances of V ;

2. For every instance x of U , U(x) is true iff V (f(x)) is true.

If f is commutable in polynomial time then U is polynomially reducible to V .

Polynomial Reduction from SAT to 3SAT Every instance of SAT (Boolean SATisfi-
ability Problem) is polynomially reducible to an instance of 3SAT. (See Video/Slide)

7.2 Linear Programming

Variables
xj for 1 ≤ j ≤ n

Objective

maximise or minimise
n∑
j=1

cjxj

Constraints
n∑
j=1

(aijxj)Ribi, for 1 ≤ i ≤ m with Ri ∈ {≤,=,≥}

A feasible solution is a variable assignment satisfying all constraints. An optimal solution is
a feasible solution satisfying the objective.

Canonical Form

• Objective: maximise
∑n

j=1 cjxj

• Constraints:
∑n

j=1 aijxj ≤ bi, for 1 ≤ i ≤ m and xj ≥ 0 for 1 ≤ j ≤ n.

Matrix Form To specify a linear programming problem we can simply provide a triplet
(A,b, c) where A is a matrix and b, c are column vectors (see slide).

Standard Form

• maximise z = cTx

• subject to the constraints Ax + Is = b and x ≥ 0 and s ≥ 0.

s are the slack and surplus variables that are used to transform constraints using inequalities
into equality constraints.
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Transformations Any LP can be transformed into a canonical form or into standard
form if needed. In general a Linear Program does not necessarily produce the non-negativity
constraints for all variables. However, in the standard form such constraints are required
for all of the variables. This is not a problem because each occurrence of an unconstrained
variable xj can be replaced by the expression x′j − xj∗ where x′j, xj∗ are new variables
satisfying the constraints x′j, xj∗ ≥ 0. Similarly constraints of the form |Ax| ≤ b can be
replaced to two linear constraints: Ax ≤ b,−Ax ≤ b.

Algorithms

• Simplex (1947): Exponential runtime in the worst case, very efficient in practice

• Ellipsoid Method (1979): Polynomial Algorithm O(n6L)(n variables, input of size L)

• Interior Point algorithms: Worst-case O(n3.5L2 lgL lg lgL), farily efficient in practice

Variants

• Integer Linear Programs (ILP) (NP-complete)

• Mixed Integer Linear Programs (continuous and integer variables)

• 0-1 Linear Programming (variables are ∈ {0, 1})

7.2.1 Decide Diet - Linear Programming

Setting You are given a list of food sources f1, f2, . . . fn for each source fi you are given:

• its price per gram pi

• the number of calories ci per gram and

• for each of 13 vitamins V1, V2, . . . , V13 you are given the content v(i, j) of milligrams of
vitamin Vj in one gram of food source fi.

For each vitamin Vj, you are given the recommended daily intake of wj milligrams.

Task Find a combination of quantities of food sources such that:

• the total number of calories in all of the chosen food is equal to a recommended daily
value of 2000 calories

• the total intake of each vitamin Vj is at least the daily intake of wj milligrams for all
1 ≤ j ≤ 13

• the price of all food per day is as low as possible.
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Solution To obtain the corresponding constraints let us assume that we take xi grams of
each food source fi for 1 ≤ i ≤ n. Then:

• the total number of calories must satisfy
∑n

i=1 xici = 2000;

• for each vitamin Vj the total amount in all food must satisfty

n∑
i=1

xiv(i, j) ≥ wj (1 ≤ j ≤ 13);

• an implicy assumption is that all quantities must be non-negative xi ≥ 0, 1 ≤ i ≤ n.

Our goal is to minimise the objective function which is the total cost y =
∑n

i=1 xipi. Note
that here all the equalities and inequalities, as well as the objective function are linear.

7.2.2 Infrastructure Politics - Integer Programming

Setting You are the (Shadow?) Treasurer and you want to make certain promises to the
electorate that will ensure that your party will win in the forthcoming elections. You promise
that you will build

• a certain number of bridges, each 3 billion a piece. Each bridge you promise brings
you 5% of city votes, 7% of suburban votes and 9% of rural votes.

• a certain number of rural airports, each 2 billion a piece. Each rural airport you
promise brings you no city votes, 2% of suburban votes and 15% of rural votes.

• a certain number of olympic swimming pools each a billion a piece. Each olympic
swimming pool promised brings you 12% of city votes, 3% of suburban votes and no
rural votes.

Task In order to win, you have to get at least 51% of each of the city, suburban and rural
votes. Win the election by cleverly making a promise that appears to blow as small hole in
the budget as possible.

Solution Let the number of bridges, airports and swimming pools to be xb, xa, xp respec-
tively. The problem amounts to minimising the objective y = 3xb + 2xa + xp, while making
sure that the following constraints are satisfied.

0.05xb + 0.12xp ≥ 0.51 (securing majority of city votes)

0.07xb + 0.02xa + 0.03xp ≥ 0.51 (securing majority of suburban votes)

0.09xb + 0.15xa ≥ 0.51 (securing majority of rural votes)

xb, xa, xp ≥ 0.

This is an example of Integer Linear Programming which is much harder than the ”plain”
Linear Programming and is in fact NP hard!
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7.3 NP Completeness

A decision problem A(x) is in non-deterministic polynomial time, denotes by A ∈ NP, if:

1. there exists a problem B(x, y) such that for every input x,A(x) is true just in case
there exists y such that B(x, y) is true; and

2. such that the truth of B(x, y) can be verified by an algorithm running in polynomial
time in the length of x only.

We call y a certificate of x.

NP-hardness A problem is NP-hard if any problem in NP is reducible to it. I.e., a problem
P is NP-hard if for any other problem P ′ that is in the class NP, there exists a polynomial
reduction fP ′ from P ′ to P . A problem is NP-complete if it is both NP-hard and in the class
NP.

Proving NP completeness Sometimes the distinction between a problem in P and an
NP complete problem can be subtle!

in P NP complete
Given a graph G and two vertices s
and t, is there a path from s to t of
length at most K?

Given a graph G and two vertices s
and t, is there a simple path from s to
t of length at least K?

Given a propositional formula in CNF
form such that every clause has at
most two propositional variables, does
the formula have a satisfying
assignment?

Given a propositional formula in CNF
form such that every clause has at
most three propositional variables,
does the formula have a satisfying
assignment?

Given a graph G, does G have a tour
where every edge is traversed exactly
once? (An Euler tour.)

Given a graph G, does G have a tour
where every vertex is visited exactly
once? (A Hamiltonian cycle.)

Theorem Let U be an NP-hard problem and let V be another decision problem. If U is
polynomially reducible to V then V is also NP-hard.

NP Hard Optimisation If an optimisation problem is NP-hard, we do not try to solve it
exactly, but instead, try to find a feasible (i.e., P time) algorithm which produces a solution
that is not too bad. Examples (extra info in slides):

• Vertex Cover: We use an approximation algorithm that always produces a covering set
with at most twice the number of the smallest vertex cover.

• Metric Traveling Salesman: Has an approximation algorithm producing a tour of total
length at most twice the length of the optimal, minimal length tour.

Cook’s Theorem Every NP problem is polynomially reducible to the SAT problem.

NP Complete Examples 3SAT, Travelling Salesman, Register Allocation, Set Cover,...

26


	Mathematical Reminders
	Geometric Series
	Basic logarithm identity
	Asymptotic notations

	Stable Matchings and the Gale-Shapely Algorithm
	Stable Matching Problem
	Gale-Shapley Algorithm

	Divide and Conquer
	Foundations for Divide and Conquer
	Integer Addition and Multiplication
	Matrix multiplication
	Master Theorem
	Polynomial Interpolation
	Counting Inversions
	Discrete Fourier Transform
	Convolution

	Greedy Algorithms
	Foundations for The Greedy Method
	Activity Selection Problem
	Dijkstra's Shortest Path Algorithm
	Huffman Code
	Union-Find
	Minimum Spanning Trees

	Maximum Flow
	Flow Networks
	Ford-Fulkerson Algorithm
	Solving Different Problems with Maximum Flow
	Networks with Multiple Sources and Sinks
	Maximum Matching In Bipartite Graphs
	Max Flow with Vertex Capacities

	Applications of Max Flow Algorithm
	Allocation: Movie Rental
	Multiple Sources and Sinks: Cargo Allocation
	Vertex Capacities: Disjoint Paths


	Dynamic Programming
	Foundations for Dynamic Programming
	Activity Selection II
	Longest Increasing Subeqence
	Integer Knapsack Problem (without Duplicates)
	Balanaced Partition
	Assembly Line Scheduling
	Pseudo-Polynomial Time
	Making Change
	Integer Knapsack Problem with Duplicates
	Pseudo-Polynomial Time

	Shortest Path Algorithms
	Bellman-Ford: Shortest Paths with Negative Weights
	Floyd-Warshall


	Reductions
	Decision Problems
	Linear Programming
	Decide Diet - Linear Programming
	Infrastructure Politics - Integer Programming

	NP Completeness


