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1 Introduction

Real one-variable calculus f : R → R

• limits

• continuity

• differentiability

• integrability

Important Theorems

• Min-max theorem
A continuous function on a closed interval attains a max and min value.

• Intermediate Value Theorem
A continuous function on [a, b] attains all values in [f(a), f(b)].

• Mean Value Theorem
Connects the instantaneous rate of change of differentiable function to its change over
a finite closed interval.

Mutivariable Calclus Applications f : Rn → Rm

• Fluid dynamics

• Black Scholes Options Pricing Model

2 Curves and Surfaces

2.1 Curves

The parameterisation of a curve in Rn is a vector-valued function

c : I → Rn

where I is an interval on R.

• A multiple point is a point through which the curve passes more than once.

• If I = [a, b] then c(a) and c(b) are called end points.

• A curve is closed if its end points are the same point, c(a) = c(b).
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2.2 Limits and Calculus for Curves

For an interval I ⊂ R and curve c : I → Rn with

c(t) = (c1(t), c2(t), . . . cn(t)),

the functions ci : I → R, i = 1, 2, . . . , n are called the components of c.

• If limt→a ci(t) exists for all i, then limt→a c(t) and

lim
t→a

c(t) =
(
lim
t→a

c1(t), lim
t→a

c2(t), . . . lim
t→a

cn(t)
)

• If c′i(t) exists for all i, then

c′(t) = (c′1(t), c
′
2(t), . . . , c

′
n(t))

2.3 Surfaces

You have seen surfaces in R3 described in 3 ways.

• Graph: z = f(x, y)

• Implicitly: x2 + y2 + z2 = 1

• Parametrically: x = x0 + λ1v1 + λ2v2

3 Analysis

3.1 Formal Definition of a Limit

1-variable Calculus Recall that limx→a f(x) = L requires that for all ϵ > 0, there exists
a δ > 0 such that if |x− a| < δ then

|f(x)− L| < ϵ.

3.2 Distance Functions (metrics)

A function d : Rn ×Rn → R which satisfies the following three properties is called a metric.

• Positive Definite: for all x, y ∈ Rn, d(x, y) > 0 and d(x, y) = 0 iff x = y.

• Symmetric: for all x, y ∈ Rn, d(x, y) = d(y, x).

• Triangle Inequality for all x, y, z ∈ Rn, d(x, y) + d(y, z) ≥ d(x, z).

Euclidean Distance The Euclidean distance between x and y defined by

d(x, y) = ||x− y|| =

√√√√ n∑
i=1

(xi − yi)2

is a metric.
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Equivalent Metrics Two metrics d and δ are considered equal if there exists constants
0 < c < C < ∞ such that

cδ(x, y) ≤ d(x, y) ≤ Cδ(x, y).

3.3 Limits of Sequences

Ball A ball around a ∈ Rn of radius ϵ > 0 is the set

B(a, ϵ) = {x ∈ Rn : d(a,x) < ϵ}.

Limit of Sequences For a sequence {xi} of points in Rn we say that x is the limit of the
sequence if and only if

∀ϵ > 0∃N such that n ≥ N =⇒ d(x,xn) < ϵ

or equivalently
∀ϵ > 0∃N such that n ≥ N =⇒ xn ∈ B(x, ϵ).

If x is the limit of the sequence {xi} then for each positive ϵ there is a point in the sequence
beyond which all points of the sequence are inside B(x, ϵ).

Convergence

A sequence xk converges to a limit x

⇔ the components of xk converge to the components of x

⇔ d(xk,x) → 0.

Cauchy Sequences A sequence {xk} in Rn is a Cauchy sequence if

∀ϵ > 0∃K such that k, l > K =⇒ d(xk,xl) < ϵ.

A sequence {xk} converges in Rn to a limit if and only if {xk} is a Cauchy sequence.

3.4 Open and Closed Sets

Definitions Consider xk

• x0 ∈ Ω is an interior point of Ω if there is a ball around x0 completely contained in Ω.
That is, there exists a ϵ > 0 such that B(x0, ϵ) ⊆ Ω.

• Ω is open if every point of Ω is an interior point.

• Ω is closed if its complement is open.

• x0 ∈ Ω is a boundary point of Ω if every ball around x0 contains points in Ω and points
not in Ω.

Closed Sets Ω ⊂ Rn is closed if and only if it contains all of its boundary points.
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Union and Intersection

• A finite union/intersection of open sets is open.

• A finite union/intersection of closed sets is closed.

Limit Points and Sets x0 is a limit point (or accumulation point) of Ω if there is a
sequence {xi} in Ω with limit x0 and xi ̸= x.

• Every interior points of Ω is a limit point of Ω.

• x0 is not necessarily in Ω.

• A set is closed ⇔ it contains all of its limit points.

Variations of a Set Consider the set Ω ∈ Rn.

• The interior of Ω is the set of all its interior points (denoted Int(Ω)).

• The boundary of Ω is the set of all its boundary points (denoted ∂Ω).

• The closure of Ω is Ω ∪ ∂Ω (denoted by Ω̄).

The interior is the largest open subset and the closure is the smallest closed set containing Ω.

3.5 Limits

Limit of a Function at a Point Let b ∈ Rm,Ω ⊆ Rn, a ∈ Ω̄ and let f : Ω → Rm be a
function. We say that f(x) converges to b as x → a if

∀ϵ > 0 ∃δ > 0 such that for x ∈ Ω :

0 < d(x,x0) < δ =⇒ d(f(x),b) < ϵ.

or alternatively
x ∈ B(a, δ) ∩ Ω =⇒ f(x) ∈ B(b, ϵ).

If such b exists, then it is unique and we write

lim
x→a

f(x) = b.

Useful Limit Theorems Let b ∈ Rm,Ω ⊆ Rn, a ∈ Ω̄ and let f : Ω → Rm be a function.
Then

lim
x→a

f(x) = b ⇐⇒ lim
x→a

fi(x) = bi for all i = 1, . . . ,m

lim
x→a

f(x) = b ⇐⇒ lim
k→∞

f(xk) = b

for every sequence {xk}∞k=1 ⊆ Ω with limk→∞ xk = a.
The first theorem is useful to show that a limit exists whilst the second is useful to show

the limit does not exist.
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Algebra of limits Given that, limx→x0 f(x) = a and limx→x0 g(x) = b, then,

lim
x→x0

(f + g)(x) = a+ b

lim
x→x0

(fg)(x) = ab

lim
x→x0

(
f

g
)(x) =

a

b
, given b ̸= 0.

Pinching Principle Let Ω ⊂ Rn, let a be a limit point of Ω and let f, g, h : Ω → R be
functions such that there exists ϵ > 0 such that

g(x) ≤ f(x) ≤ h(x) ∀x ∈ B(a, ϵ) ∩ Ω.

Then
lim
x→a

g(x) = b = lim
x→a

h(x) =⇒ lim
x→a

f(x) = b.

3.6 Continuity

Continuity is like an extension to limits. It first requires that the limit exists and that the
limit equals the actual value at that point.

Definition Let a ∈ Ω ⊆ Rn and let f : Ω → Rm be a function. Then f is continuous at a
if and only if

lim
x→a

f(x) = f(a)

f is said to be continuous on Ω if it is continuous at a for every a ∈ Ω.

Epsilon-Delta Interpretation

For all ϵ > 0 there exists δ > 0 such that if x ∈ B(a, δ) ∩ Ω =⇒ f(x) ∈ B(f(a), ϵ).

Continuity by Components All component functions fi : Ω → R are continuous at a.

Continuity through Sequences For every sequence {xk}∞k=1 with xk ∈ Ω for all k, if
{xk}∞k=1 has limit a then {f(xk)}∞k=1 converges to f(a).

Elementary Functions If f : Ω ⊆ Rn → R is an elementary function, then f is continuous
on Ω.

Preimage Suppose that Ω ⊆ Rn and f : Ω → Rm is a function. The preimage of a set
U ⊆ Rm is defined by

f−1(U) = {x ∈ Rn : f(x) ∈ U}.

7



Continuity - Using Preimage Suppose that f : Ω ⊂ Rn → Rm. The following two
statements are equivalent.

• f is continuous on Ω.

• f−1(U) is open in Rn for every open subset U of Rm.

3.7 Path Connected Sets

Definition A set Ω ⊆ Rn is said to be path connected if for any x,y ∈ Ω, there is a
continuous function φ such that φ(t) ∈ Ω for all t ∈ [0, 1] and φ(0) = x and φ(1) = y.

Theorem Let Ω ⊆ Rn and f : Ω → Rm be continuous. Then

B ⊆ Ω and B path connected =⇒ f(B) path connected.

3.8 Compact Sets

Bounded A set Ω ⊆ Rn is bounded if there is an M ∈ R such that d(x,0) ≤ M for all
x ∈ Ω ⇐⇒ Ω ⊆ B(0,M) .

Compact A set Ω ⊆ Rn is compact if it is closed and bounded.

Theorem Let Ω ⊆ Rn and f : Ω → Rm be continuous. Then

K ⊆ Ω and K compact =⇒ f(K) compact.

3.9 Bolzano-Weierstrass Theorem

For Ω ⊆ Rn, the following are equivalent.

1. Ω is compact.

2. Every sequence in Ω has a subsequence that converges to an element of Ω.

4 Differentiation

4.1 Differentiability, Derivatives and Affine Approximations

Differentiability in R f : R → R is differentiable at some a ∈ R means there is a good
straight-line approximation to f near a called a tangent line. This approximating function
is given by

T (x) = f(a) + f ′(a)(x− a) = f(a)− f ′(a)a+ f ′(a)x = y0 + L(x)

where for all a, y0 = f(a) − f ′(a)a is a fixed number and L : R → R = f ′(a)x is the linear
map.

Recall that

f ′(a) = lim
x→a

f(x)− f(a)

x− a
.
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Linear Maps A function L : Rn → Rm is called linear iff for all x, y ∈ Rn for all λ ∈ R :

L(x+ y) = L(x) + L(y) and L(λx) = λL(x).

Affine Maps A function T : Rn → Rm is affine means there is y0 ∈ Rm and a linear map
(ie matrix) L : Rn → Rm such that

T (x) = y0 + L(x).

A function f : R → R is affine iff f(x) = ax+ b, for some a, b ∈ R.

Affine approximation The function f : Ω ⊆ Rn → Rm has an affine approximation at a
point a ∈ Ω if and only if there exists a matrix A ∈ Mm×n(R) such that

lim
x→a

d(f(x)− f(a), A(x− a))

d(x, a)
= 0

If f has an affine approximation at a point a ∈ Ω, then the matrix A in the definition is
called the derivative of f at a and is denoted by Df(a) (or Daf).

The function Taf : Rn → Rm defined by

Taf(x) = Df(a)(x− a) + f(a)

is called the best affine approximation of f at a.

Differentiability in Rn → Rn A function f : Ω ⊂ Rn → Rm is differentiable for some
a ∈ Ω if there exists a linear map L : Rn → Rm such that

lim
x→a

||f(x)− f(a)− L(x− a)||
||L(x− a)||

= 0.

Notation: the matrix of the linear map L, the derivative of f at a is denoted by Daf .

Delta Epsilon Definition of Differentiability A function f : Ω ⊂ R → Rm is differen-
tiable on a ∈ Ω if there is a linear map L : Rn → Rm such that ∀ϵ > 0∃δ > 0 such that for
all x ∈ Ω

||x− a|| < δ → ||f(x)− f(a)− L(x− a)|| < ϵ ||x− a|| .

4.2 Partial Derivatives

Let a ∈ Rn and f : Ω → R be a function with coordinates xi and standard basis vectors
ei, i ∈ {1, . . . , n}. The partial derivative of f in direction i is defined as

∂f

∂xi

= lim
h→0

f(a+ hei)− f(a)

h

assuming the limit exists.

9



Claiaut’s Theorem If f,
∂f

∂xi

,
∂f

∂xj

,
∂2f

∂xixj

,
∂2f

∂xjxi

all exist and are continuous on an open

set around a then
∂2f

∂xixj

(a) =
∂2f

∂xjxi

(a).

That is the partial derivatives commute.

4.3 Jacobian Matrix

Definition If all partial derivatives of f : Ω → Rm exists at a ∈ ω ⊆ Rn, then the Jacobian
matrix of f at a is

Jaf =



∂f1
∂x1

(a)
∂f1
∂x2

(a) · · · ∂f1
∂xn

(a)

∂f2
∂x1

(a)
∂f2
∂x2

(a) · · · ∂f2
∂xn

(a)

...
...

. . .
...

∂fn
∂x1

(a)
∂fn
∂x2

(a) · · · ∂fm
∂xn

(a)


.

Theorem Let Ω ⊆ Rn, a ∈ Ω be an interior point and f : Ω → Rm be a function. If f is

differentiable at a then all partial derivatives
∂fj
∂xi

exist at a and

Df(a) = Jf(a).

Best affine approximation: Taf(x) = Jf(a)(x− a) + f(a).

4.4 Differentiable and Continuous

Limit at 0 For x ∈ Rn and L an m× n matrix,

lim
x→0

||Lx|| = 0.

Open Sets Let Ω ∈ Rn be open and let f : Ω → Rm be a function that is differentiable
on Ω. Then f is continuous on Ω.

Partial Derivatives + Continuity Let Ω ⊆ Rn be open and let f : Ω → Rm be a

function. If for all i = 1, . . . , n and all j = 1, . . . ,m the partial derivative
∂fj
∂xi

exists and is

continuous on Ω then f is differentiable on Ω.

4.5 Chain Rule, Gradient, Directional Derivatives, Tangent Planes

Chain Rule Let Ω ⊆ Rn,Ω′ ⊆ Rm and let a ∈ Ω. Suppose f : Ω → Rm and g : Ω′ → Rk

are functions such that f(Ω) ⊆ Ω′. If f is differentiable at a and g is differentiable at f(a),
then g ◦ f is differentiable at a and

D(g ◦ f)(a) = Dg(f(a))Df(a).
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Gradient For f : Ω ⊂ Rn → R, if the Jacobian exists, then it is given by the 1×n matrix

Jf =



∂f

∂x1
∂f

∂x2

· · ·
∂f

∂xn


.

This is equivalent to the gradient of f . That is,

grad(f) = ∇f =



∂f

∂x1
∂f

∂x2

· · ·
∂f

∂xn


.

Directional Derivative The directional derivative of f : Ω ⊂ Rn → R in the direction of
the unit vector û at a ∈ Ω is

Dûf(a) = f ′
û(a) = lim

h→0

f(a+ hû)− f(a)

h
.

if the limit exists.
Equivalently, if f : Ω ⊂ Rn → R is differentiable at a then for a unit vector u

Duf(a) = f ′
u(a) = ∇f(a) · u.

Alternatively, allowing θ to be the angle between ∇f(a) and u,

Duf(a) = |∇f(a)| · |u| · cos θ.

Affine Approximation Allow f : Ω ⊂ Rn → R to be a differentiable function at a ∈ Ω.
The best affine approximation to f at a may be written in terms of the gradient vector as

T (x) = f(a) +∇f(a) · (x− a).

Tangent Planes The tangent plane to a function z = f(x, y) is given by

z = T (x, y).
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4.6 Taylor Series and Theorem

Taylor’s Theorem For all continuous and differentiable functions f : R → R,

f(x) ≈ Pk,a(x) =
k∑

n=0

f (n)(a)

n!
(x− a)n +Rk,a(x)

where the remainder R is

Rk,a(x) =
f (k+1)(z)

(k + 1)!
(x− a)k+1

for some z between x and a.
P0,a, P1,a, P2,a, P3,a are the best constant, affine, quadratic, cubic approximations.

Hessian Matrix For Ω ⊆ Rn and f : Ω → R, the Hessain matrix of f at a point a ∈ Ω is
the n× n matrix

Hf(a) =



∂2f

∂x2
1

(a)
∂2f

∂x2∂x1

(a) · · · ∂2f

∂xn∂x1

(a)

∂2f

∂x1∂x2

(a)
∂2f

∂x2
2

(a) · · · ∂2f

∂xn∂x2

(a)

...
...

. . .
...

∂2f

∂x1∂xn

(a)
∂2f

∂x2∂xn

(a) · · · ∂2f

∂x2
n

(a)


.

assuming the 2nd order partial derivatives exist.

Class A function f : Ω → R,Ω ⊆ Rn open, is called (of class) Cr if all partial derivatives
of f of order ≤ r exist and are continuous.

Taylor Polynomials Let Ω ⊆ Rn be open, let a ∈ Ω, and let f : Ω → R be a function of
class C2. The polynomial

P1,a(x) = f(a) +∇f(a) · (x− a)

is called the Taylor polynomial of order 1 about a and the polynomial

P2,a(x) = f(a) +∇f(a) · (x− a) +
1

2
(x− a) ·Hf(a)(x− a)

is called the Taylor Polynomial of order 2 about a.
In general, if f : Ω → R is Cr,Ω open , a ∈ Ω:

Pr,a(x) = f(a) +∇f(a) · (x− a) +
1

2
(x− a) ·Hf(a)(x− a)

+ · · ·+ 1

r!

n∑
i1,...,ir=1

∂rf

∂xi1 . . . ∂xir

(a)(xi1 − ai1) · · · · · (xir − air).
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Taylor’s Theorem (1st order) Let Ω ∈ Rn be open, let f : Ω → R be a function of class
C2. Let x, a ∈ Ω s.t. the line segment between x and a is contained in Ω. Then there exist
z on this line segment such that

f(x) = f(a) +∇f(a) · (x− a) +R1,a(x)

where R1,a(x) =
1
2
(x− a) · (Hf(z)(z − a)).

Taylor’s Theorem (2 nd order) Let Ω ∈ Rn be open, let f : Ω → R be a function of
class C3. Let x, a ∈ Ω s.t. the line segment between x and a is contained in Ω. Then there
exist z on this line segment such that

f(x) = f(a) +∇f(a) · (x− a) +
1

2
(x− a)Hf(a)(x− a) +R2,a(x)

where R2,a(x) : Ω → R is a function such that |R2,a(x)|
|x−a|2 → 0 as x → a.

4.7 Maxima, Minima and Saddle Points

Definitions Let a ∈ Ω ⊆ Rn and f : Ω → R be a function. Then

• a is an absolute or global maximum of f if f(a) ≥ f(x) for all x ∈ Ω.

• a is an absolute or global minimum of f if f(a) ≤ f(x) for all x ∈ Ω.

• a is a local maximum of f if there is an open A ⊆ Ω containing a such that f(a) ≥ f(x)
for all x ∈ A.

• a is a local minimum of f if there is an open A ⊆ Ω containing a such that f(a) ≤ f(x)
for all x ∈ A.

• a is a stationary point of f if f is differentiable at a and ∇f(a) = 0.

• a is a saddle point of f if a is a stationary point of f but it’s neither a local max nor
a local minimum of f .

Critical Points Let a ∈ Ω ⊆ Rn and f : Ω → R be a function. If a is a local maximum
or a local minimum then

1. a is a stationary, or

2. a ∈ ∂Ω ⇐⇒ a is a boundary pt, or

3. f is not differentiable at a.

Points satisfying 1, 2 or 3 are called critical points.

13



4.8 Classification of Stationary Points

Definition: An n× n martix H is

• positive definite ⇐⇒ all eigenvalues are > 0

• positive semi-definite ⇐⇒ all eigenvalues are ≥ 0

• positive definite ⇐⇒ all eigenvalues are < 0

• positive semi-definite ⇐⇒ all eigenvalues are ≤ 0

Criterion for Local Extrema Let Ω ⊆ Rn be open, a ∈ Ω and let f : Ω → R be a
function such that all paritial derivaitves of f of order at most 2 exists on Ω and ∇f(a) = 0.
Then

• Hf(a) is positive definite =⇒ f has a local minimum at a;

• Hf(a) is negative definite =⇒ f has a local maximum at a;

• f has a local minimum at a =⇒ Hf(a) is positive semi-definite;

• f has a local maximum at a =⇒ Hf(a) is negative semi-definite;

Sylvesetr’s Criterion If Hk is the upper k × k matrix of H and ∆k = det(Hk), then

• H is positive definite ⇐⇒ ∆k > 0 for all k

• H is positive semi-definite =⇒ ∆k ≥ 0 for all k

• H is negative definite ⇐⇒ ∆k < 0 for all odd k and ∆k > 0 for all even k

• H is negative semi-definite =⇒ ∆k ≤ 0 for all odd k and ∆k ≥ 0 for all even k

4.9 Lagrange Multipliers, Implicit and Inverse Function Theorems

Lagrange Multipliers Suppose f : Rn → R and φ : Rn → R are differentiable and
S = {x ∈ Rn : φ(x) = c} defines a smooth surface on Rn. If f attains a local maximum or
minimum at a point a ∈ S then ∇f(a) and ∇φ(a) are parallel. If ∇φ(a) ̸= 0, there exist a
Lagrange multiplier λ ∈ R such that

∇f(a) = λ∇φ(a).

Inverse Function Theorem for f : R → R If f : R → R is differentiable on an open
interval I ∈ R and f ′(x) ̸= 0 for all x ∈ I, then f is invertible on I and the inverse
f−1 : f(I) → R is differentiable with

(f−1)′(x) =
1

f ′(f−1(x))
.
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Generalising the Inverse Function Theorem Let Ω ⊆ Rn be open, f : Ω → Rn be C1

and suppose a ∈ Ω. If Df(a) is invertible (as a matrix) then f is invertible on an open set
U containing a. That is,

f−1 : f(U) → U

exists. Furthermore, f−1 is C1 and for x ∈ U ,

Df(x)f
−1 = (Dxf)

−1.

5 Integration

5.1 Riemann Integral

Riemann Integral For a bounded function f : R → R, if there exists a unique numder I
such that

SP1,P2
(f) ≤ I ≤ SP1,P2(f)

for every pair of partitions P1,P2 of R, then f is Riemann integrable on R and

I =

¨
R

f =

¨
R

f(x, y)dA.

I is called the Riemann integral of f over R.

Properties of the Riemann Integral For a function of one variable, the Riemann inte-
gral is interpreted as the (signed) area bounded by the graph y = f(x) and the x-axis over
the interval [a, b]. For a function of two variables

˜
R
f is the (signed) volume bounded by

the graph z = f(x, y) and the xy-plane over the rectangle R. If f and g are integrable on R,

• Linearity:
˜

R
αf + βg = α

˜
R
f + β

´ ´
R
g, α, β ∈ R.

• Positivity (monotonicity): If f(x) ≤ g(x),∀x ∈ R then
˜

R
f ≤
˜

R
g

•
∣∣˜

R
f
∣∣ ≤ ˜

R
|f |

• If R = R1 ∪R2 and (interior R1) ∩ (interior R2) = ∅ then

¨
R

f =

¨
R1

f +

¨
R2

f.

5.2 Fubini’s Theorem

Fubini’s Theorem - Rectangles Let f : R → R be continuous on a rectangular domain
R = [a, b]× [c, d]. Then f is a bounded function and is integerable over R. Moreover,

ˆ b

a

ˆ d

c

f(x, y) dydx =

ˆ d

c

ˆ b

a

f(x, y) dxdy =

¨
R

f.
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Fubini’s Theorem - Discontinuous Let f : R → R be bounded on a rectangular domain
R = [a, b]×[c, d] with the discontinuities of f confined to a finite union of graphs of continuous

functions. If the integral
´ d
c
f(x, y) dy exists for each x ∈ [a, b] then

¨
R

f =

ˆ b

a

(ˆ d

c

f(x, y) dy

)
dx.

Similarly, if the integral
´ b
a
f(x, y) dx exists for each y ∈ [c, d], then

¨
R

f =

ˆ d

c

(ˆ b

a

f(x, y) dx

)
dy.

Iterated Integrals for Elementary Regions Suppose D is a y-simple region bounded
by x = a, x = b, y = φ1(x) and y = φ2(x) and f : D → R is continuous. Then

¨
D

f =

ˆ b

a

ˆ φ2(x)

φ1(x)

f(x, y) dxdy.

A simile result holds for integrals over x-simple regions.

5.3 Leibniz’ Rule

Basic Version Let a, b, c, d ∈ R If f : [a, b] × [c, d] → R and ∂f
∂x

are continuous on the
rectangle [a, b]× [c, d]. Then

g(x) =

ˆ d

c

f(x, y) dy.

is differentiable and has derivative

g′(x) =
d

dx

[ˆ d

c

f(x, y) dy

]
=

ˆ d

c

∂f

∂x
(x, y)dy for a ≤ x ≤ b.

With variable limits Let a, b ∈ R with a ≤ b, let φ1, φ2 : [a, b] → R be continuously
differientiable functions such that φ1(x) ≤ φ2(x) for all x ∈ [a, b]. If f : D1 → R and ∂f

∂x
are

continuous on the region D1 with

D1 = {(x, y) : x ∈ [a, b] and φ1(x) ≤ y ≤ φ2(x)}

then the function g(x) =
´ φ2(x)

φ1(x)
f(x, y) dy is differntiable and

g′(x) =

ˆ φ2(x)

φ1(x)

∂f

∂x
(x, y) dy + f(x, φ2(x))φ

′
2(x)− f(x, φ1(x))φ

′
1(x).

Note: If φ1(x) ≡ c, φ2(x) ≡ d where c, d are constants. Then g′(x) =
´ d

c
∂f
∂x

dy (reduced to
the previous version).
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5.4 Change of Variable

Let Ω ⊆ Rn and F : Ω → Rn be an injective and continuously differentiable function such
that det JF (x)) ̸= 0 for all x ∈ Ω. If f is any function that is integrable on Ω′ = F (Ω) then

¨
Ω′
(f ◦ F )| det JF |.

6 Fourier Series

Fourier Series A Fourier series is the approximation of simple periodic functions by the
sum of period functions of the form sin(x), cos(x). Note that unlike Taylor series, a function
f may be discontinuous. However, any lack of continuity leads to an infinite sum in the
Fourier series.

6.1 Inner Products and Norms

Inner Products Let V be a (real) vector space. An inner product on V is a map that
assigns each f, g ∈ V a real number ⟨f, g⟩ in such a way that

• ⟨f, f⟩ ≥ 0,

• ⟨f, f⟩ = 0 if and only if f is zero,

• ⟨λf + µg, h⟩, = λ⟨f, h⟩ + µ⟨g, h⟩,

• ⟨g, f⟩ = ⟨f, g⟩.

for all functions f, g, h ∈ V and all real constants λ, µ.

Usual Inner Products

• The vector space Rn consisting of all n-dimensional vector admits the following inner
product

⟨v, w⟩ = v · w =
n∑

i=1

viwi.

• The vector space C[a, b] consisting of all continuous function defined on the interval
[a, b] admits the following inner product

⟨f, g⟩ =
ˆ b

a

f(x)g(x) dx.
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Norms A norm on V is a map that assigns each f ∈ V a real number ||f || in such a way
that

• ||f || > 0,

• ||f || = 0 if and only if f = 0,

• ||λf || = |λ| ||f ||,

• ||f + g|| ≤ ||f ||+ ||g|| (triangle inequality)

for all functions f, g ∈ V and all real constant λ.

Usual Norms Consider a vector space C[a, b] consisting of all continuous functions on
[a, b].

• The 2-norm (L2-norm) is a norm on C[a, b]:

||f ||2 =

√ˆ b

a

f(x)2 dx

• The max norm is a norm on C[a, b]:

||f ||∞ = max
a≤x≤b

{|f(x)|}

Theorem Every inner product on a vector space V induces a norm given by

||f || =
√

⟨f, f⟩,

and the Cauchy-Schwartz inequality holds:

|⟨f, g⟩| ≤ ||f || ||g|| for all f, g ∈ V.

6.2 Fourier Coefficients and Fourier Series

Fourier Series Suppose that a given function f : R → R is a 2π-periodic and is square
integrable (i.e.,

´ π
−π

f(x)2 dx < ∞). Its Fourier series is given by

Sf (x) =
a0
2

+
n∑

k=1

[ak cos(kx) + bk sin(kx)]

where

ak =
1

π

ˆ π

−π

f(x) cos(kx) dx, k = 0, 1, 2, . . .

and

bk =
1

π

ˆ π

−π

f(x) sin(kx) dx, k = 1, 2, . . .

18



6.3 Pointwise Convergence of Fourier Series

Piecewise Continuous Functions Consider a function f : R → R and a point c ∈ R.
Suppose that the one-sided limits f(c+) = limx→c+ f(x) and f(c−) = limx→c− f(x) exists.

• If f(c+) = f(c−) = f(c), then f is continuous at c.

• If f(c+) = f(c−) ̸= f(c) or if f(c+) = f(c−) but f(c) is undefined, then f has a
removable discontinuity at c.

• If f(c+) ̸= f(c−), then f has a jump discontinuity at c.

A function f : [a, b] → R is piecewise continuous on [a, b] if and only if

(1) For each x ∈ [a, b), f(x+) exists;

(2) For each x ∈ (a, b], f(x−) exists;

(3) f is continuous on (a, b) except at (most) a finite number of points.

Note that if f is only piecewise continuous then the partial sum of the Fourier series does
not necessarily converge to f for all x.

Piecewise Differentiable Functions Consider a function f : R → R and a point c ∈ R.
We write

D+f(c) = lim
h→0+

f(c+ h)− f(c+)

h
if this one-sided limit exists. Likewise,

D−f(c) = lim
h→0−

f(c+ h)− f(c−)

h
.

A function f is differentiable at c if and only if f(c+) = f(c) = f(c−) and D+f(c) = D−f(c).
A function f is piecewise differentiable on [a, b] if and only if

(1) For each x ∈ [a, b), D+f(x) exists;

(2) For each x ∈ (a, b], D−f(x) exists;

(3) f is differentiable on (a, b) except at (most) a finite number of points.

Pointwise Convergence Let c ∈ R and suppose that a function f : R → R has the
following properties:

1. f is 2π-periodic;

2. f is piecewise continuous on [−π, π];

3. D+f(c) and D−f(c) exists.

If f is continuous at c then,
Sf (c) = f(c).

If f has a jump/removable discontinuity at c, then

Sf (c) =
1

2
[f(c+) + f(c−)].
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6.4 General Periodic, Half Range + Odd and Even Functions

General Periodic Functions Suppose that f has period 2L, instead of 2π:

f(x+ 2L) = f(x) for x ∈ R.

Note that cos
(
π
L
x
)
and sin

(
π
L
x
)
are periodic functions with period 2L. So, the decomposition

becomes

f(x) =
a0
2

+
∞∑
k=1

(
ak cos

(
kπ

L
x

)
+ bk sin

(
kπ

L
x

))
where

ak =
1

L

ˆ L

−L

f(x) cos

(
kπx

L

)
dx, k = 0, 1, 2, . . .

and

bk =
1

L

ˆ L

−L

f(x) sin

(
kπx

L

)
dx, k = 1, 2, . . .

Half Range Expansion Let f be defined on [0, L]. We can extend f to an even function
(or odd function) on [−L,L] and calculate its Fourier Series.

Odd and Even Functions We define an odd and even functions by the conditions
f(−x) = −f(x) and f(−x) = f(x) respectively for a function f . The following elemen-
tary properties hold:

• Odd × Even = Odd

• Odd × Odd = Even

• Even × Even = Even

•
´ L
−L

Odd = 0

Odd and Even Functions for Fourier Series If f is odd, then

ak =
1

L

ˆ L

−L

f(x) cos

(
kπx

L

)
dx = 0

and

bk =
1

L

ˆ L

−L

f(x) sin

(
kπx

L

)
dx =

2

L

ˆ L

0

f(x) sin

(
kπx

L

)
dx.

So the Fourier series becomes

Sf (x) =
∞∑
k=1

bk sin

(
kπx

L

)
. (Fourier Sine Series)
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If f is even, then

ak =
1

L

ˆ L

−L

f(x) cos

(
kπx

L

)
dx =

2

L

ˆ L

0

f(x) cos

(
kπx

L

)
dx.

and

bk =
1

L

ˆ L

−L

f(x) sin

(
kπx

L

)
dx = 0

So the Fourier series becomes

Sf (x) =
a0
2

+
∞∑
k=1

ak cos

(
kπx

L

)
. (Fourier Cosine Series)

6.5 Convergence of Sequences

Pointwise Convergence Let fk : R → R. We say fk converges to f on [a, b] pointwisely
iff, for every x ∈ [a, b], fk(x) → f(x) as k → ∞. In this case, f is called the pointwise limit.
In terms of ϵ− δ language:

For every x ∈ [a, b], ϵ > 0, there exists an K (depends on ϵ and x), such that

|fk(x)− f(x)| ≤ ϵ for all k ≥ K.

Uniform Convergence Let fk : R → R. We say fk converges to f on [a, b] uniformly iff
for every ϵ > 0, there exists an K (depends on ϵ only), such that

sup
x∈[a,b]

|fk(x)− f(x)| ≤ ϵ for all k ≥ K.

Uniform Convergence Theorem If fk : R → R is continuous on [a, b] for all k if:

• fk → f uniformly on [a, b] then f is continuous on [a, b].

• f has at least one discontinuity on [a, b], fk cannot converge uniformly to f on [a, b].

Weierstrass Test Let fk : R → R be a sequence of function defined on [a, b]. Suppose
that there exists a sequence of numbers ck such that

|fk(x)| ≤ ck for all x ∈ [a, b]

and
∑∞

k=1 ck converges (or exists as a real number). Then
∑∞

k=1 fk converges uniformly to a
function f on [a, b].

Note that this test also holds for functions f : Rn → R for x ∈ Ω where Ω is a closed
bounded set in Rn.
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Norm Convergence Consider the supremum norm ||f || = supx∈[a,b] |f(x)|. The definition
of uniform convergence can be equivalently written as: for every ϵ > 0, there exists an K
such that

||fk − f || ≤ ϵ for all k ≥ K.

Equivalently,
lim
k→∞

||fk − f || = 0.

Here, the norm is defined as the supremum norm. Extending this idea, we can define norm
convergence for any arbitrary norm.

Let V be a vector space of functions f equipeed with a norm ||f ||. We say a sequence of
functions f1, . . . fk, . . . , (norm) converges to f in V if f ∈ V and

lim
k→∞

||fk − f || = 0.

As such, the L2 norm convergence, also known as mean square convergence is equivalent
to the following

lim
k→∞

ˆ b

a

[fk(x)− f(x)]2dx = 0.

Parseval Theorem Let f be 2π periodic, bounded and
´ π
−π

f(x)2 dx < +∞. Then, the
Fourier series of f converges to f in the mean square sense. Moreover, the following Parseval’s
identity holds: ˆ π

−π

f 2(x) dx = ||f ||22 =
π

2
a20 + π

∞∑
k=1

(a2k + b2k).

This identity continues to hold for 2L periodic functions integrated over [−L,L].

7 Vector Fields

7.1 Vector Fields and Flow

Vector Fields A vector field in 3D space has components that are functions and is of the
type

F(x) = F(x, y, z)

= (F1(x, y, z), F2(x, y, z), F3(x, y, z))

= F1(x, y, z)i+ F2(x, y, z)j+ F3(x, y, z)k.

A vector field in 2D has components that are functions and is of the type

F(x) = F(x, y)

= (F1(x, y), F2(x, y))

= F1(x, y)i+ F2(x, y)j.
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Flow Lines If F is a vector field, a flow line for F is a path c(t) such that

c′(t) = F(c(t)).

That is, F yields the velocity field of the path c(t).

The Del ∇ operator The vector differential operator ∇ is not a vector, but an operator.
It may be considered a symbolic vector. The differential operator may be written as

∇ =
∂

∂x
i+

∂

∂y
j+

∂

∂z
k.

Divergence If F = F1i+ F2j+ F3k, the divergence of F is the scalar field

div F = ∇ · F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

Divergence may be thought as a type of derivative that describes the measure at which
a vector field spreads away from a certain point. If the divergence is positive, then there is
a net outflow while there is net inflow if the divergence is negative.

Observe that the divergence of a vector field will be real-valued.

Curl If F = F1i+ F2j+ F3k, the curl of F is the vector field

curl F = ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣
=

(
∂F3

∂y
− ∂F2

∂z

)
i+

(
∂F1

∂z
− ∂F3

∂x

)
j+

(
∂F2

∂x
− ∂F1

∂y

)
k.

Curl is also analogous to a type of derivative for vector fields. The curl may be thought as
the measure at which the vector field swirls around a point. A positive swirl can be thought
of as a counterclockwise rotation.

Observe that the curl of a vector field is also a vector field.

7.2 Vector Identities

Basic Vector Identities

1. ∇(f + g) = ∇f +∇g

2. ∇(λf) = λ∇f where λ ∈ R

3. ∇(fg) = f∇g + g∇f . You may draw analogies to the product.

4. ∇
(
f

g

)
=

g∇f − f∇g

g2
where g ̸= 0. This is analogous to the quotient rule.
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5. ∇ · (F+G) = ∇ · F+∇ ·G

6. ∇× (F+G) = ∇× F+∇×G

7. ∇ · (fF) = f∇ · F+ F ·∇f

8. ∇ · (F×G) = G · (∇× F)− F · (∇×G)

9. ∇ · (∇× F) = 0

10. ∇× (fF) = f∇× F = ∇f × F

11. ∇× (∇f) = 0

12. ∇2(fg) = f∇2g + 2(∇f ·∇g) + g∇2f

13. ∇ · (∇f ×∇g) = 0

14. ∇ · (f∇g − g∇f) = f∇2g − g∇f 2

8 Path Integrals

8.1 Path Integrals

Path (scalar line) Integrals We say that a vector-valued function c(t) parametrises a
curve C for a < t < b if the image of c traces out the curve C.

Computing a Scalar Line Integral Let c(t) be a parametrisation of a curve C ∈ R3 for
a < t < b. Assume that f(x, y, z) and c′(t) are continuous. Then

ˆ
C

f(x, y, z) ds =

ˆ b

a

f(c(t))||c′(t)|| dt

The value of the integral on the right does not depend on the choice of parametrisation. For
f(x, y, z) = 1, we obtain the length of C:

Length of C =

ˆ
C

||c′(t)|| dt

where ||c′(t)|| =
√

[x′(t)]2 + [y′(t)]2 + [z′(t)]2 for c(t) = (x(t), y(t), z(t)).

Elementary Properties of Path Integral

•
´
C
f1 ds+

´
C
f2 ds =

´
C
(f1 + f2) ds

•
´
C
λf ds = λ

´
C
f ds, λ ∈ R
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8.2 Applications of Path Integrals

Mass Suppose that δ = δ(x, y, z) which is a density function.

M =

ˆ
C

δ(x, y, z) dz

First Moments About the Coordinate Planes

Myz =

ˆ
C

xδ ds, Mxz =

ˆ
C

yδ ds, Mxy =

ˆ
C

zδ ds

Coordinates of the Center of Mass

x̄ =
Myz

M
, ȳ =

Mxz

M
, z̄ =

Mxy

M

Moments of Inertia about Axes

Ix =

ˆ
C

(y2 + z2)δ dx, Iy =

ˆ
C

(x2 + z2)δ ds, Iz =

ˆ
C

(x2 + y2)δ ds

9 Vector Line Integrals

9.1 Vector Line Integrals

Vector Line Integrals There is an important distinction between vector and scalar line
integrals. To define a vector line integral we must specify a direction along the path or curve
C.

A curve C can be traversed in one of two directions. We say that C is oriented if one of
these two directions is specified. We refer to the specified direction as the forward direction
along the curve.

Computing a Line Integral Let c(t) be a parameterisation of an oriented curve C for
a ≤ t ≤ b. The line integral of a vector field F along C is the defined by

ˆ
C

F · ds =
ˆ b

a

F(c(t)) · c′(t) dt.

Link with the path integral Let c(t) be a parametrisation of an oriented smooth curve
C and let T̂ denotes the unit tangent vector pointing in the forward direction of C.

T̂(c(t)) =
c′(t)

||c′(t)||

Then, the line integral of a vector field F over the oriented curve C is the path integral of
the tangential component of F along C, that isˆ

c

F · ds =
ˆ
C

F · T̂ ds.
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Summing Paths Let Ci, i = 1, . . . ,m be curves with continuous differentiable parameter-
isations. Let C = C1 +C2 + · · ·+Cm, that is, C is the union of curves Ci, which are joined
end-to-end. Then, we define ˆ

C

F · ds =
m∑
i=1

ˆ
Ci

F · ds.

Work notation Denote c(t) = (x(t), y(t), z(t)) and F = (M,N,P ) = M i, N j, Pk. Then,
we can denote work as any of the following notations:

W =

ˆ
C

F · ds

=

ˆ b

a

F(c(t)) · c′(t) dt (Definition)

=

ˆ b

a

(
M

dx

dt
+N

dy

dt
+ P

dz

dt

)
dt

=

ˆ b

a

Mdx+Ndy + Pdz. (Alternative form)

Properties of Line Integrals Let C be a smooth oriented curve and let F and G be
vector fields.

(i) Linearity:
ˆ
C

(F+G) · ds =
ˆ
C

F · ds+
ˆ
C

G · ds
ˆ
C

kF · ds = k

ˆ
C

F · ds (k a constant)

(ii) Reversing orientation: ˆ
−C

F · ds = −
ˆ
C

F · ds

(iii) Additivity: If C is a union of n smooth curves C1 + · · ·+ Cn, thenˆ
C

F · ds =
ˆ
C1

+ · · ·+
ˆ
Cn

F · ds

9.2 Other Applications

Flow Integral, Circulation If r(t) is a smooth curve in the domain of a continuous
velocity field F, the flow along the curve from t = a to t = b is

Flow =

ˆ b

a

F · T̂ ds

The integral in this case is called a flow integral. If the curve is a closed loop, the flow is
called the circulation around the curve.
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Flux Across a Closed Curve in the Plane If C is a smooth closed curve in the domain
of a continuous vector field F = M(x, y)i + N(x, y)j in the plane and if n̂ is the outward-
pointing unit normal vector on C, the flux of F across C is

Flux of F across C =

ˆ
C

F · n̂ ds.

Calculating Flux Across a Smooth Closed Plane Curve

(Flux of F = M i+N j across C) =

˛
C

M dy −N dx

The integral can be evaluated from any smooth parametrisation x = g(t), y = h(t), a ≤ t ≤ b,
that traces C counterclockwise exactly once.

9.3 Fundamental Theorem of Line Integrals

(Second) Fundamental Theorem of Calculus in One Vairable Let f : R → R and
φ : R → R. If f(x) = φ′(x), then

ˆ b

a

φ′(x) dx =

ˆ b

a

f(x) dx = φ(b)− φ(a).

Gradient Fields A vector field F is called a gradient vector field if there exists a real-
valued function φ such that F = ∇φ. That is, (M,N,P ) = (∂φ

∂x
, ∂φ
∂y
, ∂φ
∂z
). A vector field F

with this property is called conservative and φ is called the potential function of F.

Fundamental Theorem for Gradient Vector Fields If F = ∇φ on a domain D, then
for every oriented smooth curve C in D with initial point P and terminal point Q.ˆ

C

F · ds = φ(Q)− φ(P )

If C is closed (i.e., if P = Q), then
¸
C
F · ds = 0.

Cross Partials of a Gradient Vector Field are Equal Let F = (F1, F2, F3) be a
gradient vector field whose components have continuous partial derivatives. Then the cross
partials are equal:

∂F1

∂y
=

∂F2

∂x
,

∂F2

∂z
=

∂F3

∂y
,

∂F3

∂x
=

∂F1

∂z

Similarly, if the vector field in the plane F = (F1, F2) is the gradient vector field, then
∂F1

∂y
=

∂F2

∂x
. Equivalently, ∇× F = 0.

9.4 Green’s Theorem

Green’s Theorem connects double integrals with line integrals and is very useful for line
integrals over complicated vector fields with simpler partial derivatives.
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Green’s Theorem (Flux-divergence or Normal Form) Let D be a bounded simple
region in R2 with nonempty interior, whose boundary consists of a finite number of smooth
curves. Let C be the boundary of D with a positive (counter-clockwise) direction. Let
F = M i+N j be a vector field which is continuously differentiable on D. Then, the outward
flux of F across the curve C equals the double integral of divergence ∇ · F over D, that is

˛
C

F · n̂ ds =

˛
C

−N dx+M dy =

¨
D

(
∂M

∂x
+

∂N

∂y

)
dxdy

Three key assumptions:

• The region D is bounded and simple region with nonempty interior.

• The boundary C is oriented in the positive (counter-clockwise) direction, and is a finite
union of smooth curves.

• The vector field F is continuously differentiable on D.

Green’s Theorem (Circulation-curl or Tangential Form) LetD be a bounded simple
region in R2 with nonempty interior, whose boundary consists of a finite number of smooth
curves. Let C be the boundary of D with a positive (counter-clockwise) direction. Let
F = M i+N j be a vector field which is continuously differentiable on D. Then, the counter-
clockwise circulation of F around C equals the double integral ∇ × F · k over D, that
is ˛

C

F · T̂ ds =

˛
C

M dx+N dy =

¨
D

(
∂N

∂x
− ∂M

∂y

)
dxdy

Area of a Region Let D be a simple and bounded region with non-empty interior and
let C be its boundary with positive (counter-clockwise) direction which is a finite union of
smooth curves. Then, the area of D can be calculated by

Area(D) =
1

2

˛
C

(−y dx+ x dy).

10 Surface Integrals

10.1 Parametrised Surfaces

Parametrised Surface A parametrised surface is a function ϕ : D ⊆ R2 → R3, where D
is some domain in R2, that is,

ϕ(u, v) = (x(u, v), y(u, v), z(u, v)).

The surface S corresponding to the function ϕ is its image: S = ϕ(D). If ϕ is differen-
tiable (resp. continuously differentiable), then we call S a differentiable (resp. continuously
differentiable) surface.
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Cone The cone z2 = x2 + y2 has the parametrisation

ϕ(u, v) = (u cos v, u sin v, u), 0 ≤ v ≤ 2π, u ∈ R.

Cylinder The cylinder of radius R, x2 + y2 = R2 has the parametrisation

ϕ(θ, z) = (R cos θ, R sin θ, z), 0 ≤ θ ≤ 2π, z ∈ R.

Sphere The sphere of radius R, x2 + y2 + z2 = R2 has the parametrisation

Φ(θ, ϕ) = (R cos θ sinϕ,R sin θ sinϕ,R cosϕ), 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π.

10.2 Surface Area

In the rest of this section, we consider smooth parametrised surfaces and also piecewise
smooth parametrised surfaces.

Area of a Surface Let Φ(u, v) be parametrisation of a smooth surface S with parameter
domain D. The area of the surface S is

Area(S) =

¨
D

||Tu ×Tv|| dudv.

Sometimes we write
||n(u, v)|| = ||Tu ×Tv||.

Note that this n(u, v) is not necessarily a unit vector and neither are the tangent vectors.

10.3 Surface Integral

Let Φ(u, v) be a parametrisation of a smooth parametrised surface S with parameter domain
D. The surface integral of f over S is

¨
S

f(x, y, z) dS

=

¨
D

f(Φ(u, v))||Tu ×Tv|| dudv

=

¨
D

f(Φ(u, v))||n(u, v)|| dudv.

If S is piecewise smooth parameterised surface S which are made up of finitely many
smooth surface Si, i = 1, . . . ,m, then, the surface integral of f over S is

¨
S

f(x, y, z) dS =
m∑
i=1

¨
Si

f(x, y, z) dS.
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10.4 Surface Integrals of Vector-Valued Functions

The surface integral of a vector field F over an oriented smooth parametrerised surface S is
defined as ¨

S

F · dS =

¨
S

(F · n̂) dS.

More generally, for a piecewise smooth parametrised surface S formed by finite union of
oriented smooth surfaces Si, i = 1, . . . ,m, then¨

S

F · dS =
m∑
i=1

¨
Si

F · dS.

If S is a smooth parametrised oriented surface and Φ parameterises the surface S (i.e.,
n̂ in the normal direction specificed by the orientation of S) then,¨

S

F · dS =

¨
S

(F · n̂) dS

=

¨
D

(
F(Φ(u, v)) · Tu ×Tv

||Tu ×Tv||

)
||Tu ×Tv|| dudv

=

¨
D

F(Φ(u, v)) · (Tu ×Tv) dudv

11 Integral Theorems

11.1 Stokes Theorem

Stokes theorem gives the relationship between a surface integral over a surface S and a linear
integral around the boundary curve of S.

Let S be a smooth oriented surface defined by a one-to-one parametrisation Φ : D ⊂
R2 → S, where D is a region to which Green’s theorem applies. Let ∂S denote the oriented
boundary of S and let F be a C1 vector field on S. Then¨

S

(∇× F ) · dS =

ˆ
∂S

F · ds.

11.2 (Gauss) Divergence Theorem

The divergence theorem gives the relationship between a triple integral over a region W and
a surface integral over its boundary surface S.

Let W ⊆ R3 be a bounded, solid and simple region, and let F be a vector field in R3

which is continuously differentiable on W . Let S be the boundary of W which is a piece-wise
smooth parameterised surface formed by a finite union of oriented smooth surfaces (say Si).
Then, the outward flux of F across the surface S equals the triple integral of divergence divF
over W , that is ¨

S

F · dS =

˚
W

∇ · F dV

where
˜

S
F · dS =

∑˜
Si
F · dS and the surface are oriented such that the normal vector

points outwards.
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