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Chapter 1

Linear ODEs

1.1 Introduction

Recall that a first-order ordinary differential equation (ODE) has, in its most general realisation, the form

y′(t) = f(t, y(t)).

A special case is the equation
a(t)y′(t) + b(t)y(t) = f(t),

with a(t) ̸= 0 on some interval I ∈ R. This special first-order ODE is called a linear first-order ODE.
Another special case is

y′(t) = f(t)g(y),

which is known as a separable first-order ODE.

For a separable equation the solution is found (at least, implicitly by) writing:ˆ
1

g(y)
dy =

ˆ
f(t) dt.

Solving Seperable ODEs Consider y′ = t2y, y(0) = 3. This is seperable with f(t) = t2 and
g(y) = y. Then ˆ

1

y
dy =

ˆ
t2 dt

so that

ln |y(t)| = 1

3
t3 + C.

Now apply et to both sides to obtain

|y(t)| = e
1
3
t3+C = eCe

1
3
t3 .

Thus, a general solution of the equation is

y(t) = Ae
1
3
t3 .

Since y(0) = 3, we see that the unique solution is y(t) = 3e
1
3
t3 .

In the case of a linear first-order equation, i.e. y′+a(t)y = f(t), a useful solution method is the integrating
factor technique. The idea is to find a function µ so that when we multiply both sides of the equation with
µ we find that

[µy](t)′ = µ(t)(y′ + a(t)y) = µ(t)f(t),
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for if this happens, then the general solution of the ODE should be

y(t) =
1

µ(t)

ˆ
µ(t)f(t) dt+

C

µ(t)
.

Solving Linear First-Order ODE Solve y′ − 2ty = 3t. We pick

µ(t) = e
´
−2t dt = e−t2 .

Then

(e−t2y)′ = 3te−t2

e−t2y =

ˆ
3te−t2 dt = −3

2
e−t2 + C

y(t) = −3

2
+ Cet

2

.

1.2 Linear Differential Operators

In linear algebra, you have seen the compact notation Ax = b for system of linear equations. A similar
notation when dealing with a linear ordinary differential equations is

Lu = f.

Here, L is an operator (or transformation) that acts on a function u to create a new function Lu.
Given coefficients a0(x), a1(x), . . . , am(x) we define the linear differential operator L of order m,

Lu(x) =
m∑
j=0

aj(x)D
ju(x)

= amD
mu+ am−1D

m−1u+ · · ·+ aou,

where Dju = dju/dxj (with D0u = u).

We refer to am as the leading coefficient of L and assume that each aj(x) is a smooth function of x.

The ODE Lu = f is said to be singular with respect to an interval [a, b] if the leading coefficient am(x)
vanishes for any x ∈ [a, b].

Example Lu = (x − 3)u′′′ − (1 + cosx)u′ + 6u is a linear differential of order 3, with leading
coefficient x− 3. Thus, L is singular on [1, 4], but not singular on [0, 2].

Example N(u) = u′′ + u2u′ − u is a nonlinear differential operator of order 2.

Linearity For any constants c1 and c2 and any m-times differentiable functions u1 and u2,

L(c1u1 + c2u2) = c1Lu1 + c2Lu2.
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Ordinary differential equations of the form Lu = 0 are known as homogenous. Those of the form Lu = f
are known as inhomogeneous.

When the solution to a differential equation is prescribed at a particular point x = x0, that is

u(x0) = v0, u′(x0) = v1, . . . , u(m−1)(x0) = vm−1,

we call it an initial value problem. Where a differential equation is order 2 or greater, solutions at 2 or
more locations can be prescribed. Such problems are called boundary value problems.

Unique Solution to Linear Initial Problem For an ODE Lu = f which is not singular with
repsect to a, b, with f continuous on [a, b], the IVP for an mth-order linear differential operator with
m inital values has a unique solution.

Solution to mth Order Problem has Dimension m Assume that the linear, mth-order differ-
ential operator L is not singular on [a, b]. Then the set of all solutions to the homogenous equation
Lu = 0 on [a, b] is a vector space of dimension m.

If {u1, u2, . . . , um} is any basis for the solution space of Lu = 0, then every solution can be written in a
unique way as

u(x) = c1u1(x) + c2u2(x) + · · ·+ cmum(x) for a ≤ x ≤ 4.

We refer to this as the general solution of the homogenous equation Lu = 0 on [a, b].

Linear superposition refers to this technique of constructing a new solution out of a linear combination
of old ones.

Example The general solution to u′′ − u′ − 2u = 0 is u(x) = c1e
−x + c2e

2x.

Consider the inhomogeneous equation Lu = f on [a, b], and fix a particular solution uP .
For any solution u, the difference u− uP is a solution of the homogenous equation because

L(u− uP ) = Lu− LuP = f − f = 0 on [a, b].

Hence, u(x)− uP (x) = c1u1(x) + . . .cmum(x) for some constants c1, . . . , cm and so

u(x) = uP (x) + c1u1(x) + · · ·+ cmum(x)︸ ︷︷ ︸
uH(x)

, a ≤ x ≤ b,

is the general solution of the inhomogeneous equation Lu = f .

Example The inhomogenous ODE u′′ − u′ − 2u = −2ex has a particular solution uP (x) = ex.
The general solution for its homogenous counterpart is uH(x) = c1e

−x + c2e
2x.

So the general solution of the inhomogeneous ODE is

u(x) = uP (x) + uH(x) = ex + c1e
−x + c2e

2x.
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Reduction of Order For u = u1(x) ̸= 0, a solution to the ODE

u′′ + p(x)u′ + q(x)u = 0,

on some interval I, then a second solution is

u = u1(x)

ˆ
1

u2
1 exp

(´
p dx

) dx.
Example For the ODE u′′ − 6u′ + 9u = 0, take u1 = e3x and find v. Answer xe3x.

1.3 Differential Operators with Constant Coefficients

If L has constant coefficients, then the problem of solving Lu = 0 reduces to that of factorising the poly-
nomial having the same coefficients.

Suppose that aj is constant for 0 ≤ j ≤ m, with am ̸= 0. We define the associated polynomial of degree
m,

p(z) =
m∑
j=0

ajz
j = amz

m + am−1z
m−1 + · · ·+ a1z + a0,

so that if
Lu = amu

(m) + am−1u
(m−1)+···+a1u+a0 ,

then formally, L = p(D).

By the fundamental theorem of algebra,

p(z) = am(z − λ1)
k1(z − λ2)

k2 · · · (z − λ)kr

where λ1, λ@, . . . , λr satisfying
k1 + k2 + · · ·+ kr = m.

Lemma (D − λ)xjeλx = jxj−1eλx for j ≥ 0.

Lemma (D − λ)kxjeλx = 0 for j = 0, 1, . . . , k − 1.

Basic Solutions If (z − λ)k is a factor of p(z) then the function u(x) = xjeλx is a solution of
Lu = 0 for 0 ≤ j ≤ k − 1.

General Solution For the constant-coefficient case, the general solution of the homogenous equa-
tion Lu = 0 is

u(x) =
r∑

q=1

kq−1∑
l=0

cqlx
leλqx,

where the cql are arbitrary constants.
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Repeated Real Root From the factorisation

D4 + 6D3 + 9D2 − 4D − 12 = (D − 1)(D + 2)2(D + 3)

we see that the general solution of

u′′′′ + 6u′′′ + 9′′ − 4u′ − 12u = 0

is
u = c1e

x + c2e
−2x + c3xe

−2x + c4e
−3x.

Complex Root From the factorisation

D3 − 7D2 + 17D − 15 = (D2 − 4D + 5)(D − 3)

= (D − 2− i)(D − 2 + i)(D − 3)

we see that the general solution of

u′′′ − 7u′′ + 17u′ − 15u = 0

is

u(x) = c1e
(2+i)x + c2e

(2−i)x + c3e
3x

= c4e
2x cosx+ c5e

2x sinx+ c3e
3x.

Second-order ODEs arise naturally in classical mechanics for example a harmonic simple oscillator.

1.4 Wronskians and Linear Independence

We introduce a function, called the Wronskain that provides us with a way of testing whether a family of
solutions to Lu = 0 is linearly independent.

Let u1(x), u2(x), . . . , um(x) be functions defined on an interval I ∈ R. The functions u1, . . . , um are called
linearly dependent if there exist constant a1, a2, . . . , am not all zero such that

a1u1(x) + a2u2(x) + · · ·+ amum(x) = 0 ∀x ∈ I.

If the above equation only holds for

ai = 0, i = 1, 2, . . . ,m

then the functions are linearly independent.

Example u1 = sin 2x and u2 = sinx cosx are linearly dependent.
u1 = sinx and u2 = cosx are linearly indepdent.

The Wronskian of the functions u1, u2, . . . , um is the m×m determinant

W (x) = W (x;u1, u2, . . . , um) = det
[
Di−1uj

]
.
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Example The Wronskian of the functions u1 = e2x, u2 = xe2x and u3 = e−x is

W =

∣∣∣∣∣∣
e2x xe2x e−x

2e2x e2x + 2xe2x −e−x

4e2x 4e2x + 4xe2x e−x

∣∣∣∣∣∣ = 9e3x.

Lemma If u1, . . . , um are linearly dependent over an interval [a, b] then W (x;u1, . . . , um) = 0 for
a ≤ x ≤ b.

Lemma If u1, u2, . . . , um are solutions of Lu = 0 on the interval [a, b] then their Wronskain satisfies

am(x)W
′(x) + am−1(x)W (x) = 0, a ≤ x ≤ b.

Linear Independence of Solutions Let u1, u2, . . . , um be solutions of a non-singular, linear,
homogenous, m-th order ODE Lu = 0 on the interval [a, b].
Either

W (x) = 0 for a ≤ x ≤ b and the m solutions are linearly dependent,
or else

W (x) ̸= 0 for a ≤ x ≤ b and the m solutions are linearly independent.

1.5 Methods for Inhomogeneous Equations

1.5.1 Judicious Guessing Method

You would have learned the mthod of undetermined coefficients for constructing a particular solution uP

to an inhomogeneous second-order linear ODE Lu = f in some simple cases. We will study this method
systematically for higher-order linear ODEs with constant coefficients.

Superposition of Solutions Suppose that u1 solves Lu = e3x, and u2 solves Lu = sinx, where L
is a linear differential operator. Then the solution of

Lu = e3x + sinx

is
u(x) = u1(x) + u2(x).

And a solution of

Lu =
1

2
e3x − 5 sinx

is

u(x) =
1

2
u1(x)− 5u2(x).

Now we want to investigate some methods for finding particular solutions - i.e., finding a solution of
Lu = f . One such method is the method of judicious guessing. For example:

1. If f is a polynomial, then guess that up is a polynomial.

2. If f is a exponential, then guess that up is exponential.
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3. If f is a sine or cosine, then guess that up is a combination of such functions.

One problem with this method: it will only work for the types of functions identified above.

Example Suppose that u′′ − u′ = t2 + 2t. Note as before that,

uh(t) = c1 + c2e
t.

So guess,
up(t) = At3 +Bt2 + Ct+D.

Then
t2 + 2t = u′′

p − u′ = −3At2 + (6A− 2B)t+ (2B − C).

So, equating coefficients of like power terms, we see that

A = −1

3
, B = −2, C = −4, and D is unrestricted.

Therefore, reabsorbing D into c1, we see that

u(t) = uh(t) + up(t) = c1 + c2e
t − 1

3
t3 − 2t2 − 4t.

Now we look at this idea of judicious guessing in a more systematic way. Let L = p(D) be a linear
differential operator of order m with constant coefficients.

Polynomial Solutions Assume that a0 = p(0) ̸= 0. For any integer r ≥ 0, there exists a unique
polynomial uP of degree r such that LuP = xr.

Exponential Solutions Let L = p(D),M ∈ R and µ ∈ C. If p(µ) ̸= 0, then the function

uP (x) =
Meµx

p(µ)

satisfies LuP = Meµx.

Example A particular solution of u′′ + 4u′ − 3i = 3e2x is uP = e2x/3.

Product of Polynomial and Exponential Let L = p(D) and assume that p(µ) ̸= 0. For any
integer r ≥ 0, there exists a unique polynomial v of degree r such that uP = v(x)eµx satisfies
LuP = xreµx.

1.5.2 Annihilator Method

In the previous cases we proposed a solution u = uP and showed that it satisfied Lu = f . The following
is a method to derive a particular solution given Lu = f . If f(x) is differentiable at least n times and

[anD
n + an−1D

n−1 + · · · a1D1 + a0]f(x) = 0

then [anD
n + an−1D

n−1 + · · ·+ a1D
1 + a0] annihilates f .
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Example Dn annhihilates xm−1 for m ≤ n.
(D − α)n annihilates xm−1eαx for m ≤ n.

Annhilator Method: Simple Example Given Lu = f we can apply the appropriate annhiliator
to both sides and solving the resutling homogenous DE.
Let Lu = u′′ − u′ and suppose we want a solution such that Lu = x2. Annihilating both sides we
have

D3(u′′ − u′) = u(5) − u(4) = 0.

Setting w = u(4), clearly w = Cex is the general solution. Integrating four times yields

u = Cex + Ex3 + Fx2 +Gx+H.

Clearly uh = Aex+H and the form of the particular solution is uP = x(Ex2+Fx+G). Substituting
we find E = −1/3, F = −1 and G = −2.

1.5.3 Judicious Guessing Method Continued

Polynomial Solutions: The Reamining Case Let L = p(D) and assume p(0) = p′(0) = · · · =
p(k−1)(0) = 0 but p(k)(0) ̸= 0 where 1 ≤ k ≤ m − 1. For any integer r ≥ 0, there exists a unique
polynomial v of degree rsuch that uP (x) = xKv(x) satisfies LuP = xr.

Exponential Times Polynomial: Remaining Case Let L = p(D) and assume p(µ) = p′(µ) =
· · · = p(k−1)(µ) = 0. But p(k)(µ) ̸= 0, where 1 ≤ k ≤ m − 1. For any integer r ≥ 0, there exists a
unique polynomial v of degree r such that uP (x) = xkv(x)eµx satisfies LuP = xreµx.

1.5.4 Variation of Parameters

Example Find the general solution to u′′ − 4u′ + 4u = (x+ 1) exp 2x.
Note first that the general solution, uh, to u′′ − 4u′ + 4u = 0 is

u(x) = c1e
2x + c2xe

2x

since the characteristic equation is 0 = r2 − 4r + 4 = (r − 2)2. Then

W (x) =

∣∣∣∣ e2x xe2x

2e2x e2x + 2xe2x

∣∣∣∣ = e4x + 2xe4x − 2xe4x = e4x.

So by the method of variation of parameters:

v′1(x) = e−4x · −xe2x(x+ 1)e2x and v′2(x) = e−4x · e2x(x+ 1)e2x.

In other words,
v′1(x) = −x2 − x and v′2(x) = x+ 1.

Therefore u(x) = c1e
2x + c2xe

2x − (1
3
x3 + 1

2
x2)e2x + (1

2
x2 + x)xe2x.
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1.6 Solution via Power Series

General Case Consider a general second-order, linear, homogenous ODE

Lu = a2(x)u
′′ + a1(x)u

′ + a0(x)u = 0.

Equivalently,
u′′ + p(x)u′ + q(x)u = 0,

where

p(x) =
a1(x)

a2(x)
and q(x) =

a0(x)

a2(x)
.

Assume that aj is analytic at 0 for 0 ≤ j ≤ 2. Then p and q are analytic at 0, that is, they admit power
series expansions

p(z) =
∞∑
k=0

pkz
k and q(z) =

∞∑
k=0

qkz
k for |z| < ρ,

for some ρ > 0.

Convergence Theorem If the coefficients p(z) and q(z) are analytic for |z| < ρ, then the formal
power series for the solution u(z), constructed above, is also analytic for |z| < ρ.

Power Series at Zero Consider

Lu = (1− x2)u′′ − 5xu′ − 4u = 0, u(0) = 1, u′(0) = 2.

In this case,

p(z) =
−5z

1− z2
= −5

∞∑
k=0

z2k+1 and q(z) =
−4

1− z2
= −4

∞∑
k=0

z2k

are analytic for |z| < 1, so the theorem guarantees that u(z), given by the formal power series, is
also analytic for |z| < 1.

Expansion about a Point other than Zero Suppose we want a power series expansion about a point
c ̸= 0, for instance because the initial conditions are given at x = c.
A simple change of the independent variable allows us to write

u =
∞∑
k=0

Ak(z − c)k =
∞∑
k=0

AkZ
k where Z = z − c.

Since du/dx = du/dZ and d2u/dz2 = d2u/dZ2, we obtain the translated equation

d2u

dZ2
+ p(Z + c)

du

dZ
+ q(Z + c)u = 0.

Now compute that Ak using the series expansions of p(Z + c) and q(Z + c) in powers of Z.

1.7 Singular ODEs

In general, we do not want L to be singular on an interval for which we wish to solve Lu = f . However,
some important applications lead to singular ODEs so we now address this case.
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A second-order Euler-Cauchy ODE has the form

Lu = ax2u′′ + bxu′ + cu = f(x),

where a, b and c are constants with a ̸= 0. This ODE is singular at x = 0.
Noticing that

Lxr = [ar(r − 1) + br + c]xr,

we see that u = xr is a solution of the homogenous equation (f = 0) iff

ar(r − 1) + br + c = 0.

Factorisation Suppose ar(r− 1) + br+ c = a(r− r1)(r− r2). If r1 ̸= r2 then the general solution of the
homogenous equation Lu = 0 is

u(x) = C1x
r1 + C2x

r2 , x > 0.

Lemma If r1 = r2 then the general solution of the homogenous Euler-Cauchy equation Lu = 0 is

u(x) = C1x
r1 + C2x

r1 lnx, x > 0.

Euler-Cauchy Equations with Nonreal Indicial Roots Suppose that r1,2 = α± βi are the roots of
the indicial equation

ar(r − 1) + br + c = 0

associated to the Euler-Cauchy equation

at2u′′ + btu′ + cu = 0.

Then the real-valued solutions can be derived as follows. First note that

tα+βi = tαtβi

is a solution. Then notice that

tβi = eln tβi = ei ln tβ = cos
(
ln
(
tβ
))

+ i sin
(
ln
(
tβ
))
.

So,
tαtβi = tαeln tβi = tαei ln tβ = tα

(
cos
(
ln
(
tβ
))

+ i sin
(
ln
(
tβ
)))

is a solution. Finally, since each of the real part an the imaginary part is .separately a (linear independent)
solution, we see that the general solution in this case is (for t > 0)

u(t) = tα
(
c1 cos

(
ln
(
tβ
))

+ i sin
(
ln
(
tβ
)))

.

Example Consider t2u′′ − tu′ + 5u = 0. Then the indicial equation is

r(r − 1)− r + 5 = 0 =⇒ r = 1± 2i.

So the general solution is,
u(t) = t(c1 cos ln t

2 + c2 sin ln t
2).

A number of important applications lead to ODEs that can be written in the Frobenious normal form

z2u′′ + zP (z)u′ +Q(z)u = 0,
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where P (z) and Q(z) are analytic at z = 0:

P (z) =
∞∑
k=0

Pkz
k and Q(z) =

∞∑
k=0

Qkz
k, |z| < ρ.

Now consider z2u′′ + zP (z)u′ +Q(z)u = 0. Formal manipulations show that Lu(z) equals

I(r)A0z
r +

∞∑
k=1

(
I(k + r)Ak +

k−1∑
j=0

[(j + r)Pk−j +Qk−j]Aj

)
zk+r,

where I(r) is the indicial polynomial I(r) := r(r − 1)P0r +Q0, so we define A0(r) = 1 and

Ak(r) =
−1

I(k + r)

k−1∑
j=0

[(j + r)Pk−j +Qk−j]Aj(r), k ≥ 1,

provided I(k + r) ̸= 0 for all k ≥ 1.

1.8 Bessel and Legendre Equations

1.8.1 Bessel Equations and Functions

The Bessel equation with parameter ν is

z2u′′ + zu′ + (z2 − ν2)u = 0.

This ODE is in Frobenius normal form, with indicial polynomial I(r) = (r+ν)(r−ν), and we seek a series
solution

u(z) =
∞∑
k=0

Akz
k+r.

We assume Re ν ≥ 0, so r1 = ν and r2 = −ν.

With the normalisation

A0 =
1

2νΓ(1 + ν)

the series solution is called the Bessel function of order ν and is denoted

Jν(z) =
(z/2)ν

Γ(1 + ν)

[
1− (z/2)2

1 + ν
+

(z/2)4

2!(1 + ν)(2 + v)
− · · ·

]
.

From the functional equation Γ(1 + z) = zΓ(z) we see that

Jν(z) =
(z/2)ν

Γ(1 + v)
− (z/2)ν+2

Γ(2 + ν)
+

(z/2)ν+4

2!Γ(3 + v)
− (z/2)ν+6

3!Γ(4 + ν)
+ · · ·

and so

Jν(z) =
∞∑
k=0

(−1)k(z/2)2k+ν

k!Γ(k + 1 + ν)
.
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1.8.2 Legendre Equation

The Legendre equation with parameter nu is

(1− z2)u′′ − 2zu′ + ν(ν + 1)u = 0.

This ODE is not singular at z = 0 so the solution has an ordinary Taylor series expansion

u =
∞∑
k=0

Akz
k.

The Ak must satisfy
(k + 1)(k + 2)Ak+2 − [k(k + 1)− ν(ν + 1)Ak] = 0

for k ≥ 0, and since
k(k + 1)− ν(ν + 1) = (k − ν)(k + ν + 1),

the recurrence relation is

Ak+1 =
(k − ν)(k + ν + 1)

(k + 1)(k + 2)
Ak for k ≥ 0.

We have
u(z) = A0u0(z) + A1u1(z)

where

u0(z) = 1− ν(ν + 1)

2!
z2 +

(ν − 2)ν(ν + 1)(ν + 3)

4!
z4 − · · ·

and

u1(z) = z − (ν − 1)(ν + 2)

3!
z3 +

(ν − 3)(ν − 1)(ν + 2)(ν + 4)

5!
z5 − · · · .

Suppose now that ν = n is a non-negative integer. If n is even the series for u0(z) terminates, whereas if
n is odd then the series for u1(z) terminates.

The terminating solution is called the Legendre polynomial of degree n and is denoted by Pn(z) with
the normalization

Pn(1) = 1.

Lengdre Polynomials The first few Legendre polynomials are

P0(z) = 1, P3(z) =
1

2
(5z3 − 3z),

P1(z) = z, P4(z) =
1

8
(35z4 − 30z2 + 3),

P2(z) =
1

2
(3z2 − 1), P5(z) =

1

8
(63z5 − 70z3 + 15z).

Notice that Pn is an even or odd function according to whether n is even or odd.

14



Chapter 2

Dynamical Systems

2.1 Terminology

We begin with some examples of how systems of differential equations arise in applications, and see how
all such problems can be formulas as a first-order system

dx

dt
= F(x).

Such a formulation leads to a natural geometric interpretation of a solution.

Lotka-Volterra Equations Simplified ecology with two species:

F (t) = number of foxes at time t,

R(t) = number of rabbits at time t.

Assume populations large enough at F and R can be treated as smoothly varying in time.
In the 1920s, Alfred Lotka and Vito Volterra independently proposed the predator-prey model

dF

dt
= −aF + αFR, F (0) = F0,

dR

dt
= bR− βFR, R(0) = R0.

Here a, α, b and β are non-negative constants.

Any first-order system for N ODEs in the form

dx

dy
= F1(x, y, . . . , xN), x(0) = x10,

dy

dt
= F2(x, y, . . . , xN), y(0) = x20,

...
...

dxN

dt
= FN(x, y, . . . , xN), xN(0) = xN0,

can be written in vector notation as
dx

dt
= F(x) x(0) = x0.
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The system of ODEs is determined by the vector field F : RN → RN .
A system of ODEs of the form

dx

dt
= F(x)

is said to be autonomous.
In a non-autonomous system, F will depend explicitly on t:

dx

dt
= F(x, t).

It can be shown that it is sufficient (in principle) to develop theory for the autonomous case as a non-
autonomous system can be converted into an autonomous system.

Second-order ODE Consider an initial-value problem for a general (possibly non-autonomous) second-
order ODE

d2x

dt2
= f

(
x,

dx

dt
, t

)
, with x = x0 and

dx

dt
= y0 at t = 0.

If x = x(t) is a solution, and if we let y = dx/dt, then

dy

dt
=

d2x

dt2
= f

(
x,

dx

dt
, t

)
= f(x, y, t),

that is, (x, y) is a solution of the first-order system

dx

dt
= y, x(0) = x0,

dy

dt
= f(x, y, t) y(0) = y0.

2.2 Existence and Uniqueness

The most fundamental question about a dynamical system

dx

dt
= F(x, t)

is

For a given initial value x0, does a solution x(t) satisfying x(0) = x0 exist, and if so is this
solution unique?

Answer is yes, whenever the vector field F is Lipschitz.

The number L is a Lipschitz constant for a function f : [a, b] → R if

|f(x)− f(y)| ≤ L|x− y| for all x, y ∈ [a, b].

Example Consider f(x) = 2x2 − x+ 1 for 0 ≤ x ≤ 1. Since

f(x)− f(y) = 2(x2 − y2)− (x− y) = 2(x+ y)(x− y)− (x− y)

(2x+ 2y − 1)(x− y)

16



we have |f(x)− f(y)| = |2x+ 2y − 1||x− y| so a Lipschitz constant is

L = max
x,y∈[0,1]

|2x+ 2y − 1| = 3.

We say that the function f : [a, b] → R is Lipschitz if a Lipschitz constant for f exists.

Lipschitz Continuity If f is Lipshictz then f is (uniformly) continuous.

Continous does not imply Lipschitz Consider the (uniformly) continous function

f(x) = 3 +
√
x for 0 ≤ x ≤ 4.

In this case, if x, y ∈ (0, 4] then

f(x)− f(y) =
√
x−√

y =

(√
x−√

y ×
√
x+

√
y

√
x+

√
y

)
=

x− y√
x+

√
y

so if a Lipschitz constant L exists then

L ≥ |f(x)− f(y)|
|x− y|

=
1√

x+
√
y

for arbitrarily small x and y, a contradiction.

A function f : I → R is Ck if f, f ′, f ′′, . . . , f (k) all exist and are continuos on the interval I.

Theorem For any closed and bounded interval I = [a, b], if f is C1 on I then L = maxx∈I |f ′(X)|
is a Lipschitz constant for f on I.

A vector field F : S ∈ RN is Lipschitz on S ⊆ RN if

∥F(x)− F(y)∥ ≤ L∥x− y∥ for allx,y ∈ S

Here,

∥x∥ =

(
N∑
j=1

x2
j

) 1
2

denotes the Euclidean norm of the vector x ∈ RN .
We say that F(x, t) is Lipschitz in x if

∥F(x, t)− F(y, t)∥ ≤ L∥x− y∥ .

Local Existence and Uniquness Let x0 ∈ RN , fix r > 0 and τ > 0, and put

S = {(x, t) ∈ RN × R : ∥x− x0∥ ≤ r and |t| ≤ τ}.
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If F(x, t) is Lipschitz in x for x, t ∈ S, and if

∥F(x, t)∥ ≤ M for (x, t) ∈ S,

then there exists a unique C1 function bfx(t) satisfying

dx

dt
= F(x, t) for |t| ≤ min{r/M, τ}, with x(0) = x0.

2.3 Linear Dynamical Systems

Linear differential equations are generally much easier to solve than nonlinear ones. Fortunately, linear
DEs suffice for describing many important applications.
We say that the N ×N , first order system of ODEs

dx

dt
= F(x, t)

is linear if the RHS has the form
F(x, t) = A(t)x+ b(t)

for some N ×N matrix-valued function A(t) = [aij(t)] and a vector-valued function b = [bi(t)].

The system is autonomous precisely when A and b are constant.

Global Existence and Uniqueness If the elements of A(t) and components of b are continuous
for 0 ≤ t ≤ T , then the linear initial-value problem

dx

dt
= A(t)x+ b(t) for 0 ≤ t ≤ T, with x(0) = x0,

has a unique solution x(t) for 0 ≤ t ≤ T .

We now investigate the special case when A is constant and b(t) = 0:

dx

dt
= Ax

General Solution via Eigensystem If v is a constant vector and Av = λv, we define x(t) = eλtv.
Then

dx

dt
= λeλtv = eλt(λv) = eλt(Av) = A(eλtv = Ax)

that is, x is a solution of dvx/dt = Ax. If Avj = λjvj for 1 ≤ j ≤ N , then the linear combination

x(t) =
N∑
j=1

cje
λj tvj

is also a solution because the ODE is linear and homogenous. Provided the vj are linearly independent,
then the above equation is a general solution because given any x0 ∈ RN there exist unique cj such that

x(0) =
N∑
j=1

cjvj = x0.
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Example Consider

dx

dt
= −5x+ 2y, x(0) = 5,

dy

dt
= −6x+ 3y y(0) = 7.

Note that the initial value problem can be written in the vector form

x′(t) = Ax(t),x(0) = x0,

A =

[
−5 2
−6 3

]
and x0 :=

[
5
7

]
Solving the system, using the eigenpair approach, we would need to find the eigenvectors and eigen-
values.
Characteristic equation is

0 = |A− λI| = (−5− λ)(3− λ) + 12 =⇒ λ1 := −3 and λ2 = 1.

Next we find the associated eigenvectors.

λ1 = −3 : (A+ 3I)v = 0 =⇒ v1 :=

[
1
1

]
λ2 = 1 : (A+ I)v = 0 =⇒ v1 :=

[
1
3

]
This means that a general solution of the system x′ = Ax is

x(t) = c1e
−3t

[
1
1

]
+ c2e

t

[
1
3

]
Applying the initial value we can see that the unique solution is x(t) = 4e−3t+et and y(t) = 4e−3t+3et.

A square matrix A ∈ CN×N is diagonalisable if there exists a non-singular matrix Q ∈ CN×N such that
Q−1AQ is diagonal.

Theorem A square matrix A ∈ CN×N is diagonalisable if and only if there exists a basis
{v1,v2, . . . ,vN} for CN consisting of eigenvectors of A. Indeed if,

Avj = λjvj for j = 1, 2, . . . , N,

and we put Q =
[
v1 v2 · · ·vN

]
then Q−1AQ = A where

A =

λ1

. . .

λN


Consider a diagonalisable matrix A. Since Q−1AQ = Λ, it follows that A has an eigenvalue decomposition

A = QΛQ−1.

In general, we see by induction on k that

Ak = QΛkQ−1 for k = 0, 1, 2, . . .
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Example

A =

[
−5 2
−6 3

]
then

Λ =

[
−3 0
0 1

]
, Q =

[
1 1
1 3

]
, Q−1 =

1

2

[
3 −1
−1 1

]
so

Ak = QΛkQ−1 =
1

2

[
(−1)k × 3k+1 − 1 (−1)k+1 × 3k + 1
(−1)k × 3k+1 − 3 (−1)k+1 × 3k + 3

]
.

For any polynomial
p(z) = c0 + c1z + c2z

2 + · · ·+ cmz
m

and any square matrix A, we define

p(A) = c0I + c1A+ c2A
2 + · · ·+ cmA

m.

When A is diagonalisable, Ak = QΛkQ−1 so

p(A) = c0QIQ−1 + c1QΛQ−1 + · · ·+ cmQΛmQ−1

...

= Qp(Λ)Q−1

Lemma For any polynomial p and any diagonal matrix Λ,

p(A) =

p(λ1)
. . .

p(λN)



Theorem If two polynomials p and q are equal on the specturm of a diagonlisable matrix A, that
is, if

p(λj) = q(λj) for j = 1, 2, . . . , N,

then p(A) = q(A).

Example Recall that

A =

[
−5 2
−6 3

]
has eigenvalues λ1 = −3 and λ2 = 1. Let

p(z) = z2 − 4 and q(z) = −2z − 1,

and observe
p(−3) = 5 = q(−3) and p(1) = −3 = q(1).

We find

p(A) = A2 − 4I =

[
9 −4
12 −7

]
= −2A− I = q(A).
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Exponential of a Diagonalisable Matrix If A = QΛQ−1 is diagonalisable, then

eA = QeΛQ−1 and eΛ =


eλ1

eλ2

. . .

eλN


Given a forced linear system of the form x′ − Ax(t) = f(t). We can use the variation of constants
formula to solve the vector equation.

x(t) = eAtx0 + eAt

ˆ t

0

e−Asf(s) ds.

Fundamental Matrix A fundamental matrix Φ for the linear homogenous vector equation

x′(t) = Ax(t)

satisfies the following two properties.

1. The columns of X are linearly independent vector functions so that, in particular, |X(t)| ≠ 0; and

2. Φ solves the matrix equation X′(t) = AX(t).

Theorem Suppose that Φ is a fundamental matrix for the vector equations

x′ = Ax.

Then every solution of this equation has the form

Φc

for some constant vector c.

Nilpotent Matrix A matrix is nilpotent if there exists a positive integer k such that Ak = O, where O
denotes the zero matrix.

If A is nilpotent then we can easily find eAt. In particular,

eA =
∞∑
k=0

Ak

k!

eAt = I+ tA+
1

2
t2A2 + . . .

Example

A2 = AA =

[
0 0
1 0

] [
0 0
1 0

]
=

[
0 0
0 0

]
= O.

Therefore A is nilpotent and, in particular,

eAt = I+ tA =

[
1 0
t 1

]
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2.4 Stability

In many applications we are interested to know how the solution x(t) behaves as t → ∞, and might not
care much about the precise details of the transient behaviour for finite t. We say that a ∈ RN is an
equilibrium point for the dynamical system dx/dt = F(x) if

F(a) = 0.

Thus the solution of
dx

dt
= F(x) for all t, with x(0) = a

is just the constant function x(t) = a.
An equilibrium point a is stable if for every ϵ > 0 there exists δ > 0 such that whenever ∥a0 − a∥ < δ
the solution of

dx

dt
= F(x) for t > 0, with x(0) = x0

satisfies
∥x(t)− a∥ < ϵ for all t > 0.

Let D be an open subset of RN that contains an equilibrium point a. We say that a is asymptotically
stable in D if a is stable and, whenever a0 ∈ D, the solution of

dx

dt
= F(x) for t > 0, with x(0) = x0

satisfies
a(t) → a as t → ∞.

In this case D is called a domain of attraction for a.

Criteria for Stability Let A be a diagonlisable matrix with eigenvalues λ1, λ2, . . . , λN . The
equilibrium point a = −A−1b is of

dx

dt
= Ax+ b with x(0) = x0 and det(A) ̸= 0.

1. stable if and only if Reλj ≤ 0 for all j

2. asymptotically stable if and only if Reλj < 0 for all j.

In the second case, the domain of attraction is the whole of RN .

2.5 Classification of 2D Linear Systems with detA ̸= 0

The equilibrium point a = 0 may be asymptotically stable, stable or unstable but may also have various
other properties.

2.5.1 Case 1: Real Eigenvalues and Linearly Independent Eigenvectors

Suppose you have real eigenvalues λ1 and λ2 and two linearly independent eigenvectors v1 and v2.
General solution:

x = c1e
λ1tv1 + c2e

λ2tv2.

Canonical form:

Λ =

(
λ1 0
0 λ2

)
.
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Stable Node Example (λ2 < λ1 < 0)

dx

dt
= −x,

dy

dt
= −2y, A =

(
−1 0
0 −2

)
Eigenvalues and eigenvectors:

λ1 = −1, λ2 = −2,v1 =

(
1
0

)
,v2 =

(
0
1

)
The general solution is

x = c1e
−tv1 + c2e

−2tv2 =

(
c1e

−t

c2e
−2t

)
.

Solution of the initial value problem: (
x(y)
y(t)

)
=

(
x(0)e−t

y(0)e−2t

)
.

Unstable Node Example (0 < λ1 < λ2)

dx

dt
= x,

dy

dt
= 2y, A =

(
1 0
0 2

)
Eigenvalues and eigenvectors:

λ1 = 1, λ2 = 2,v1 =

(
1
0

)
,v2 =

(
0
1

)
Solution of the initial value problem: (

x(y)
y(t)

)
=

(
x(0)et

y(0)e2t

)
.

All trajectories (except x(t) = 0) are repelled from equilibrium point which is unstable.

(Un)stable Stars (λ1 = λ2 ̸= 0)

dx

dt
= λ1x,

dy

dt
= λ1y, A = λ1

(
1 0
0 1

)
All vectors are eigenvectors.
The general solution is

x = eλ1tv.

Solution of the initial value problem:
x(t) = eλ1tx(0).

All orbits (except vx(t) = 0) are oriented half-lines which are either attracted λ1 < 0 or repelled
(λ1 > 0) by the equilibrium point.
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Saddle Node Example (unstable: λ2 < 0 < λ1)

dx

dt
= x+ 2y,

dy

dt
= 3x+ 2y, A = λ1

(
1 2
3 2

)
Eigenvalues and eigenvectors:

λ1 = −1, λ2 = 4,v1 =

(
−1
1

)
,v2 =

(
2
3

)
Solution of the initial value problem:(

x(y)
y(t)

)
= c1e

−t

(
−1
1

)
+ c2e

4t

(
2
3

)
.

Here the first solution is repelling and the section is attracting, so the solution is unstable.

Nonreal eigenstuff for A

eλ1tv1 = e(α+βi)t(p+ iq)

= eαt(cos(βt) + i sin(βt))(p+ iq)

= eαt(cos(βt)p− sin(βt)q)︸ ︷︷ ︸
:=xRe(t)

+i eαt(sin(βt)p+ cos(βt)q)︸ ︷︷ ︸
:=xIm(t)

So, a basis for the solution space is then

B := {xRe,xIm}.

The general solution is,

x(t) := c1xRe(t) + c2xIm(t)

for arbitrary constants c1, c2 ∈ R.

2.5.2 Case 2: Complex Conjugate Eigenvalues

Suppose you have complex conjugate eigenvalues λ1 = λ̄2 /∈ R.
General solution:

x = c1Re(e
λ1tv1) + c2 Im(eλ1tv1).

Canonical form:

A =

(
α β
−β α

)
, λ1 = α + iβ.

Interpretation

x(t) = eαtR(t)x(0), R(t) =

(
cos βt sin βt
− sin βt cos βt

)
Thus, the initial vector x(0) is rotated by the rotation matrix R(t) and scaled by the factor eαt.
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Centre Example (stable: Re(λ1) = 0)

dx

dt
= −2y,

dy

dt
= 2x,A = λ1

(
0 −2
2 0

)
Eigenvalues:

λ1 = λ̄2 = −2i

Solution of the initial value problem:(
x(y)
y(t)

)
=

(
cos 2t − sin 2t
sin 2t cos 2t

)
+ c2e

4t

(
y(0)
y(0)

)
.

The solution constitutes orbits which are oriented circles. These are stable (but not asymptotically
stable).

Stable Foci Example (Re(λ1) < 0)

dx

dt
= −x− 2y,

dy

dt
= 2x− y, A = λ1

(
−1 −2
2 −1

)
Eigenvalues:

λ1 = λ̄2 = −1− 2i

Solution of the initial value problem:(
x(y)
y(t)

)
= e−t

(
cos 2t − sin 2t
sin 2t cos 2t

)
+ c2e

4t

(
x(0)
y(0)

)
→ 0 as t → ∞.

Orbits are oriented spirals which are attracted to the asymptotically stable equilibrium point.

2.6 Final Remarks on Nonlinear DEs

A function G : RN → R is a first integral (or constant of the motion) for the system of ODEs

dx

dt
= F(x)

if G(x(t)) is constant for every solution x(t).

Simple Example The function G(x, y) = x2 + y2 is a first integral of the linear system of ODEs

dx

dt
= −y,

dy

dt
= x.

In fact, putting

F(x, y) =

[
−y
x

]
we have

∇ · F =

[
2x
2y

]
·
[
−y
x

]
= (2x)(−y) + (2y)(x) = 0,
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or equivalently,
dG

dt
=

∂G

∂x

dx

dt
+

∂G

∂y

dy

dt
= (2x)(−y) + (2y)(x) = 0.

Cayley-Hamilton Let A ∈ Rn×n. Then A satisfies its characteristic equation.

Putzer’s Algorithm Let {λj}nj=1 be the collection of n not necessarily distinct eigenvalues of a
given matrix A ∈ Rn×n. Then

eAt =
n−1∑
k=0

pk+1(t)Mk,

where
M0 := I and Mk := Πk

j=1(A− λjI), 1 ≤ k ≤ n,

and the vector-valued function p(t) := (p1(t), . . . , pn(t)) satisfies the vectorial equation

p′(t) =


λ1 0 0 · · · 0
1 λ2 0 · · · 0
0 1 λ3 · · · 0
...

...
...

. . .
...

0 · · · 0 1 λn

p(t), p(0) =


1
0
0
...
0


So in the case in which n = 2, i.e., a two-dimensional vector equation, Putzer’s algorithm reduces to

eAt = p1(t)I+ p2(t)(A− λ1I),

where [
p′1(t)
p′2(t)

]
=

[
λ1 0
1 λ2

] [
p1(t)
p2(t)

]
, p(0) =

[
1
0

]
Similarly, in the case in which n = 3, i.e., a three-dimensional vector equation, Putzer’s algorithm reduces
to

eAt = p1(t)I+ p2(t)(A− λ1I) + p3(t)(A− λ1I)(A− λ2I),

where p′1(t)p′2(t)
p′3(t)

 =

λ1 0 0
1 λ2 0
0 1 λ3

p1(t)p2(t)
p3(t)

 , p(0) =

10
0


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Chapter 3

Initial-Boundary Value Problems in 1D

We have seen that an initial-value problem for a (nonsingular) linear ODE Lu = f always has a unique
solution. However, matters are not so simple for a boundary-value problem: a solution might not exist,
or if one exists it might not be unique.

3.1 Two-Point Boundary Value Problems

In an mth order initial-value problem we specify m initial conditions at the left end of the interval. In
an mth order boundary-value problem, we again specify m conditions involving the solution and its
derivatives, but some apply at the left end and some at the right end.

Boundary Conditions Consider the second-order ODE

u′′ + u′ = 0 for 0 < x < π

whose general solution is
u(x) = A cosx+B sinx.

A unique solution u(x) = sin x exists satisfying

u′(0) = 1 and u(π) = 0.

No solution exists satisfying
u′(0) = 0 and u(π) = 1.

Infinitely many solutions u(x) = C sinx exists satisfying

u′(0) = 0 and u(π) = 0.

We want to solve (Inhomogeneous BVP):

Lu = f for a < x < b, with B1u = α1 and B2u = α2,

where
Lu = a2u

′′ + a1u
′ + a0u

is a 2nd-order linear differential operator, and the boundary operators have the form

B1u = b11u
′(a) + b10u(a),

B2u = b21u
′(b) + b20u(b).
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Linear Two-Point Bounary Value

u′′ − u = x− 1 for 0 < x < log 2,

u = 2 at x = 0,

u′ − 2u = 2 log 2− 4 at x = log 2.

3.2 Existence and Uniqueness

Since L,B1 and B2 are all linear, the solutions of the homogenous BVP

Lu = 0 for a < x < b, with B1u = 0 and B2u = 0,

form a vector space: if u1 and u2 are solutions of the inhomogeneous BVP then so is u = c1u! + c2u2 for
any constants c1 and c2.

Uniqueness The inhomogenous BVP has at most one solution iff the homogenous BVP has only
the trivial solution u ≡ 0.

Exactly One Solution If the homogenous problem has only the trivial solution, then for every
choice of f, α1 and α2 the inhomogenous problem

Lu = f for a < x < b, with B1u = α1 and B2u = α2,

has a unique solution.

3.3 Inner Products and Norms of Functions

If a homogenous initial boundary value problem admits non-trivial solutions, then the inhomogeneous
problem might or might not have any solutions, depending on the forcing term and boundary values.

To formulate a condition that guarantees existence we require a short digression that introduces some ideas
from functional analysis.

The inner product ⟨f, g⟩ of a pair of continuous functions f, g : [a, b] → R is defined by

⟨f, g⟩ =
ˆ b

a

f(x)g(x) dx.

The corresponding norm of f is defined by

∥f∥ =
√
⟨f, f⟩ =

(ˆ b

a

[f(x)]2
)1/2

.

We say that f and g are orthogonal if ⟨f, g⟩ = 0.
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Inner Product and Norms If

[a, b] = [−1, 1], f(x) = x, g(x) = cos πx,

then

⟨f, g⟩ =
ˆ 1

−1

x cosπx dx = 0, ∥f∥ =

√
2

3
, ∥g∥ = 1.

Thus, fand g are orthogonal over the interval [−1, 1].

Cauchy-Schwarz Inequality |⟨f, g⟩ ≤ ∥f∥ ∥g∥ .

Triangle Inequality ∥f + g∥ ≤ ∥f∥ + ∥g∥ .

3.4 Self-Adjoint Differential Operators

Define the formal adjoint as

L∗v = (a2v)
′′ − (a1v)

′ + a0v

= a2v
′′ + (2a′2 − a1)v

′ + (a′′2 − a′1 + a0)v

and the bilinear concomitant

P (u, v) = u′(a2v)− u(a2v)
′ + u(a1v),

we have the Lagrange identity

⟨Lu, v⟩ = ⟨u, L∗v⟩+ [P (u, v)]ba.

Adjoint Operators and Lagrange identity If

Lu = 3xu′′ − (cosx)u′ + exu

then

L∗v = (3xv)′′ + [(cosx)v]′ + exv

= 3xv′′ + (6 + cos x)v′ + (ex − sinx)v

and

P (u, v) = u′(3xv)− u(3xv)′ − uv cosx

= 3x(u′v − uv′)− (3 + cos x)uv.

Then (Lu)v = uL∗v + d
dx
P (u, v).

The operator L is formally self-adjoint if L∗ = L.

Formally Self-Adjoint Condition A second-order, linear differential operator L is formally self-
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adjoint iff it can be written in the form

Lu = −(pu′)′ + qu = −pu′′ − p′u′ + qu,

in which case the Lagrange identity takes the form

(Lu)v − u(Lv) = −(p(x)(u′v − uv′))′,

or in other words, the bilinear concomitant it

P (u, v) = −p(x)(u′v − uv′).

Bessel and Legendre are Self-Adjoint Conside the Bessel equation

x2u′′ + xu′ + (x2 − ν2)u = f(x).

Dividing both sides by x gives Lu = −x−1f(x) where

Lu = −(xu′)′ + (ν2x−1 − x)u.

The Legendre equation
(1− x2)u′′ − 2xu′ + ν(ν + 1)u = f(x)

has the form Lu = −f(x) with Lu = −[(1− x2)u′]u′ − ν(ν + 1)u.

Transforming to Formally Self-Adjoint Form If we can evaluate the integrating factor

p(x) = exp

(ˆ
a1(x)

a2(x)
dx

)
,

then we can transform an ODE of the form a2u
′′ + a1u

′ + a0u = f(x) to formally self-adjoint form:

−pu′′ − pa1
a2

u′ − pa0
a2

u =
−pf(x)

a2
,

−(pu′′ + p′u′)− pa0
a2

u =
−pf(x)

a2
,

−(pu′)′ + qu = f̃(x)

where q = −pa0/a2 and f̃ = −pf/a2.

Euler-Cauchy ODE Write the Euler-Cauchy ODE ax2u′′ + bxu′ + cu = f(x) in formally self-
adjoint form. Note that here a2(x) = ax2, a1(x) = bx and a0(x) ≡ c.
Define p by

p(x) = exp

(ˆ
bx

ax2
dx

)
= exp

(
b

a

ˆ
1

x
dx

)
= e

b
a
lnx = x

b
a .

Then recalling that

q = −pa0
a2

and f̃ =
pf

a2
,
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the formally self-adjoint form is

−(x
b
au′)′ − c

ax2
x

b
au = − 1

ax2
x

b
af(x).

Self-Adjointness and Boundary Operators Any formally self-adjoint operator L = −(pu′)′+qu
satisfies the identity

⟨Lu, v⟩ − ⟨u, Lv⟩ =
2∑

i=1

(BiuRiv −RiuBiv),

for all v and v where

R1u =
p(a)u(a)

b11
or R1u = −p(a)u′(a)

b10

and

R2u = −p(b)u(b)

b21
or R2u =

p(b)u′(b)

b20
.

Necessary Condition for Existence If u is a solution of the inhomogeneous BVP, and if v is a solution
of the homogenous problem

Lv = 0 for a < x < b,

B1v = 0 at x = a,

B2v = 0 at x = b.

then on the one hand
⟨Lv, v⟩ − ⟨u, Lv⟩ = ⟨f, v⟩ − ⟨u, 0⟩ = ⟨f, v⟩

and on the other hand,

⟨Lv, v⟩ − ⟨u, Lv⟩ = α1︸︷︷︸
=B1u

R1v −R1u× 0︸︷︷︸
=B1v

+ α2︸︷︷︸
=B2u

R2v −R2u× 0︸︷︷︸
=B2v

.

then the data f, α1 and α2 must satisfy

⟨f, v⟩ = α1R1v + α2R2v.

Fredholm Alternative Either the homogenous BVP has only the trivial solution v ≡ 0, in which
case

the inhomogeneous BVP has a unique solution u for every choice of f, α1 and α2,

OR else the homogenous BVP admits non-trivial solutions, in which case

the inhomogeneous BVP has a solution u iff f, α1 and α2 satify ⟨f, v⟩ = α1R1v + α2R2v
for every solution v of the homogenous BVP.

In the latter case, u+ Cv is also a solution of the inhomogeneous BVP for any constant C.
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Chapter 4

Generalised Fourier Series

This chapter will cover how if we generalise the concept of Fourier expansions that include the familiar
trigonometric Fourier series allows us to solve a range of partial differential equations by separating variables
in curvilinear coordinates.

4.1 Separation of Variables for Linear PDEs

As an example of the separation of variables technique for linear PDEs consider the one-dimensional
heat PDE, which is

ut = c2uxx,

where c is the thermal diffusivity of the material. We specifically consider as an example the following
problem.

4.1.1 The Diffusion PDE

ut = uxx, 0 ≤ x ≤ 1, t ≥ 0

u(0, t) = 0 = u(1, t), t > 0

u(x, 0) = f(x), 0 < x < 1

Let u(x, t) = X(x)T (t), so that

XT ′ = X ′′T for 0 ≤ x ≤ 1, t ≥ 0,

X(0) = X(1) = 0.

Now we obtain:
X ′′

X
=

T ′

T
and we set this equal to a separation constant −λ that will help us find a basis for the solutions.

X ′′

X
=

T ′

T
= −λ =⇒ X ′′ = −λX, T ′ = −λT.

Rearranging, we have:
X ′′ + λX = 0 T ′ + λT = 0.

There are three cases for λ: zero, positive, negative.

Case 1: λ = 0. Then X ′′ = 0, which gives us X = Ax+B. The boundary conditions X(0) = X(1) = 0
imply that B = 0 and A = 0, which gives us X = 0.
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Case 2: λ < 0. So λ = −k2 for some k > 0. Then X ′′−k2X = 0, which results in X(x) = Aekx+Be−kx.
However, the boundary conditions X(0) = X(1) = 0 imply that A + B = 0 and Aek + Be−k = 0. This
results in A = −B so A(ek − e−k) = 0, and so A = B = 0. Thus again, X ≡ 0.

Case 3: λ > 0. So λ = k2 for some k > 0. Then X ′′ + k2X = 0, which means X(x) = A cos(kx) +
B sin(kx). The boundary conditions X(0) = X(1) = 0 imply that A = 0 and B sin(k) = 0. This time, we
can get non-trivial solutions, when k is a multiple of π i.e. k = nπ for some n ∈ Z+

Thus we are interested in λ = n2π2, X(x) = B sin(nπx) for n ∈ Z+.
Now we deal with T . Since we know λ now, we have

T ′ + n2π2T = 0

for some n ∈ Z+. We can solve this 1st order ODE:

T (t) = Ce−n2π2t.

So for each n, we combine T (t) with X(x) to get

un(x, t) = Ane
−n2π2t sinnπx,

for some constant An. We then superimpose these solutions so,

u(x, t) =
∞∑
n=1

Ane
−n2π2t sinnπx.

Finally, we can use the initial conditions, yielding

u(x, 0) =
∞∑
n=1

An sinnπx = f(x).

This is the half-range Fourier sine series of f , so

An = 2

ˆ 1

0

f(x) sinnπx dx.

If we were given an explicit f , we could evaluate this to get the final solution for u.

4.1.2 Wave Equation

Our second example of the application of Fourier series methods is to the partial differential equation
describing a vibrating string, such as in a musical instrument like a piano.

Put c =
√

T0/p (which has the dimensions of length / time and is called the wave speed). Now suppose
that the string is initially at rest with a known deflection u0(x), then

∂2u

∂t2
− c2

∂2u

∂x2
= 0, 0 < x < ℓ, t > 0,

u(0, t) = 0, t > 0,

u(ℓ, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < ℓ,

∂u

∂t
(x, 0) = 0, 0 < x < ℓ.

Then the separation of variables technique used in the diffusion example follows almost exactly to solve
for u in the wave equation.
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4.2 Complete Orthogonal Systems

Expanding a function as a linear combination of orthogonal function leads naturally to the notion of a
generalised Fourier series.

If w : (a, b) → R satisfies
w(x) > 0 for a < x < b,

then we define the inner product with weight function w by

⟨f, g⟩w = ⟨f, gw⟩ =
ˆ b

a

f(x)g(x)w(x) dx,

and the corresponding norm by

∥f∥ w =
√

⟨f, f⟩w =

√ˆ b

a

[f(x)]2w(x) dx.

Two functions f and g are orthogonal with respect to w over the interval (a, b) if ⟨f, g⟩w = 0.

A set of functions S ⊆ L2(a, b, w) is said to be orthogonal if every pair of functions in S is orthogonal
and if no function is identically zero on (a, b).

We say that S is orthonormal if, in addition, each function has norm 1.

Orthogonal implies Independent If S is orthogonal then S is linearly independent.

Generalised Pythagorus Theorem If {ϕ1, . . . , ϕN} is orthogonal then, for any C1, . . . , CN ∈ R,∥∥∥∥∥
N∑
j=1

Cjϕj

∥∥∥∥∥
2

w

=
N∑
j=1

C2
j ∥ϕj∥ 2

w.

Generalised Fourier Coefficients If f is in the span of an orthogonal set of functions
{ϕ1, ϕ2, . . . , ϕN} in L2(a, b, w), then the coefficients in the representation

f(x) =
N∑
j=1

Ajϕj(x)

are given by

Aj =
⟨f, ϕj⟩w
∥ϕj∥2w

for 1 ≤ j ≤ N.

We call Aj the jth Fourier coefficient of f with respect to the given orthogonal set of functions.

Consider approximating a function f ∈ L2(a, b, w) by a function in the span of an orthogonal set
{ϕ1, ϕ2, . . . , ϕN}, that is finding coefficients Cj such that

f(x) ≈
N∑
j=1

Cjϕj(x) for a < x < b.
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We seek to choose the Cj so that the weighted mean-square error∥∥∥∥∥f −
N∑
j=1

Cjϕj

∥∥∥∥∥
2

w

=

ˆ b

a

(
f(x)−

N∑
j=1

Cjϕj(x)

)2

w(x) dx

is as small as possible.

Least-Squares Approximation For all C1, C2, . . . , CN , the weighted mean-square error satisfies∥∥∥∥∥f −
N∑
j=1

Cjϕj

∥∥∥∥∥
2

w

= ∥f∥2w −
N∑
j=1

A2
j∥ϕj∥2w +

N∑
j=1

(Cj − Aj)
2∥ϕj∥2w.

The Fourier coefficients satisfy Bessel’s inequality, which is

∞∑
j=1

A2
j∥ϕj∥2w ≤ ∥f∥2w.

An orthogonal set S is complete if there is no non-trivial function in L2(a, b, w) orthogonal to every
function in S, i.e. if the condition

⟨f, ϕ⟩w = 0 for every ϕ ∈ S

implies that

∥f∥w = 0.

In particular, if S is a complete orthogonal set, then every proper subset of S fails to be complete.

Example The set S = {sin jx : j ≥ 1 and j ̸= 7} is not complete in L2(0, π) because sin 7x is
orthogonal to every function in S.

Equivalent Definitions of Completeness If S = {ϕ1, ϕ2, . . . } is orthogonal in L2(a, b, w), then
the following properties are equivalent:

1. S is complete;

2. for each f ∈ L2(a, b, w) if Aj denotes the jth Fourier coefficient of f then∥∥∥∥∥f −
N∑
j=1

Ajϕj

∥∥∥∥∥
w

→ 0 as N → ∞;

3. each function f ∈ L2(a, b, w) satisfies Parseval’s identity:

∥f∥2w =
∞∑
j=1

A2
j∥ϕj∥2w.

Least-squares Error If S = {ϕ1, ϕ2, ϕ3, . . . } is a complete orthogonal sequence in L2(a, b, w),
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then for any f ∈ L2(a, b, w),

∥eN∥2 =
∞∑

j=N+1

Aj∥ϕj∥2w.

4.3 Sturm-Liouville Problems

An ODE of the form

[p(x)u′]′ + [λr(x)− q(x)]u = 0, a < x < b,

is called a Sturm-Liouville equation. The coefficients p, q, r must all be real-valued with

p(x) > 0 and r > 0 for a < x < b.

Defining the formally self-adjoint differential operator

Lu = −[p(x)u′]′ + q(x)u,

we can write the ODE as

Lu = λru on (a, b).

Any non-trivial (possibly complex-valued) solution u satisfying Lu = λru on (a, b) (plus appropriate
boundary conditions) is said to be an eigenfunction of L with eigenvalue λ. In this case, we refer to
(ϕ, λ) as an eigenpair.

Legendre’s Equation Legendre’s equation

(1− x2)u′′ − 2xu′ + ν(ν + 1)u = 0

is equivalent to
[(1− x2)u′]′ + ν(ν + 1)u = 0

which is of the Sturm-Liouville form

p(x) = 1− x2, q(x) = 0, r(x) = 1, λ = ν(ν + 1).

Assume as before that p, q, r are real-valued with p(x) > 0 and r(x) > 0 for a < x < b. A regular
Sturm-Liouville eigenproblem is of the form

Lu = λru for a < x < b,

B1u = b11u
′ + b10u = 0 at x = a,

B2u = b21u
′ + b20u = 0 at x = b.

where a and b are finite with

p(a) ̸= 0 and p(b) ̸= 0,

and where b10, b11, b20, b21 are real with

|b10|+ |b11| ≠ 0 and |b20|+ |b21| ≠ 0.
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Eigenfunctions are Orthogonal Let L be a Sturm-Liouville differential operator. If u, v :
[a, b] → C satisfy

Lu = λru on (a, b), with B1u = 0 = B2u,

and
Lv = µrv on (a, b), with B1v = 0 = B2v,

and if λ ̸= µ, then u and v are orthogonal on the interval (a, b) with respect to the weight function
r(x), i.e.,

⟨u, v⟩r =
ˆ b

a

u(x)v(x)r(x) dx = 0.

Eigenvalues are Real Let L be a Sturm-Liouville differential operation. If u : [a, b] → C is not
identically zero and satisfies

Lu = λru on (a, b), with B1u = 0 = B2u,

then λ is real.

Completeness of the Eigenfunctions The regular Sturm-Liouville problem has a infinite se-
quence of eigenfunctions ϕ1, ϕ2, ϕ3, . . . with corresponding eigenvalues λ1, λ2, λ3, . . . and moreover:

1. the eigenfunctions ϕ1, ϕ2, ϕ3, . . . form a complete orthogonal system on the interval (a, b) with
respect to the weight function r(x);

2. the eigenvalues satisfy λ1 < λ2 < λ3 < · · · with λj → ∞ as j → ∞.

4.4 Elliptic Differential Operators

We now return to the study of PDEs by briefly introducing some concepts related to a more general study
of second-order PDEs - namely, ellipticity and divergence form PDEs.

Vector Calculus Notation Partial derivative operator ∂j = ∂/∂xj.
For a scalar field u : Rd → R, the gradient is the vector field gradu : Rd → Rd defined by

gradu = ∇u =
d∑

j=1

∂juej =


∂1u
∂2u
· · ·
∂du


For a vector field F : Rd → Rd, the divergence is the scalar field divF : Rd → R defined by

divF = ∇ · F =
d∑

j=1

∂jFj = ∂1F1 + ∂2F2 + · · ·+ ∂dFd.

Second-order Linear PDEs in Rd The most general second-order linear partial differential operator
in Rd has the form

Lu = −
d∑

j=1

d∑
k=1

ajk(x)∂j∂ku+
d∑

k=1

bk(x)∂ku+ c(x)u.
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Laplacian The Laplacian is defined by ∇2u = ∇ · (∇u) = div(gradu), that is,

∇2u =
d∑

j=1

∂2
ju = ∂2

1u+ ∂2
2u+ · · ·+ ∂2

du.

Thus, −∇2u has the form of the second-order linear PDE with

ajk(x) = δjk, bk(x) = 0, c(x) = 0.

We call

L0u =
d∑

j=1

d∑
k=1

ajk(x)∂j∂ku

the principal part of the partial differential operator.

A second-order linear partial different operator is uniformly elliptic in a subset ω ⊆ Rd if there exists a
positive constant c such that

ξTA(a)ξ ≥ c∥ξ∥2 for all a ∈ Ω and ξ ∈ Rd.

Elliptic The operator L = −∇2 is elliptic (with c = 1) on any Ω ⊆ Rd, since

d∑
j=1

d∑
k=1

δjkξjξk =
d∑

k=1

ξ2k = ∥ξ∥2.

Not Elliptic The operator L = −(∂2
1+2∂2

2−∂2
3) is not elliptic in R3 since in this case the quadratic

form

ξTAξ =
[
ξ1 ξ2 ξ3

] 1 0 0
0 2 0
0 0 −1

ξ1ξ2
ξ3

 = ξ21 + 2ξ22 − ξ23

is negative if ξ1 = ξ2 = 0 and ξ3 ̸= 0.

Symmetry and Skew-Symmetry Put

asyjk =
1

2
(ajk + akj) = symmetric part of ajk

askjk =
1

2
(ajk − akj) = skew-symmetric part of ajk,

so that
ajk = asyjk + askjk, asykj = asyjk, askkj = −askjk

When investigating if L is elliptic, it suffices to look at asyjk.

Lemma
d∑

j=1

d∑
k=1

ajk(x)ξjξk =
d∑

j=1

d∑
k=1

asyjk(x)ξjξk
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Theorem Denote the eigenvalues of the real symmetric matrix [asyjk] by λj(x) for 1 ≤ j ≤ d. The
operator of Second-order Linear PDEs is elliptic on Ω if and only if t here exists a positive constant
c such that

λj(x) ≥ c for 1 ≤ j ≤ d and all x ∈ Ω.

Elliptic

• L = −(3∂2
1 + 2∂1∂2 + 2∂2

2) is elliptic.

• L = −(∂2
1 − 4∂1∂2 + ∂2

2) is not elliptic.

The Laplacian occurs in three of the most well studied PDEs:

1. Poisson equation (Laplace’s equation if f ≡ 0) (elliptic):

−∇2u = f.

2. Diffusion equation or heat equation (parabolic):

∂u

∂t
−∇2u = f.

3. Wave equation (hyperbolic):
∂2u

∂t2
−∇2u = f.
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