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1 Group and Fields

1.1 Groups

Definition A group G is a non-empty set with a binary operation defined on it. That is

1. Closure: for all a, b in G a composition a ∗ b is defined and in G,

2. Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G,

3. Identity: there is an element e ∈ G such that a ∗ e = e ∗ a for all a ∈ G,

4. Inverse: for each a ∈ G there is an a′ in G such that a ∗ a′ = a′ ∗ a = e,

If G is a finite set then the order of G is |G|, the number of elements in G.
Groups are defined as (G, ∗). We say this as ”the group G under the operation ∗”.

Abelian Groups A group G is abelian if the operation satisfies the commutative law

a ∗ b = b ∗ a for all a, b ∈ G

Notation

• We use power notation for repeated applications: a ∗ a · · · ∗ a = an and a−n = (a−1)n.

• For group operation, × we use 1 for the identity and a−1 for inverse of a.

• For group operation, + we use 0 for the identity and −a for the inverse of a.

• We would then write na for a+ a+ · · · a (repeated addition, not multiplying by n).

Trivial Groups The trivial group is the group consisting of exactly one element, {e}. It
is the smallest possible group, since there has to be at least one element in a group.

More Properties of Groups

• There is only one identity element in G.

• Each element of G only has one inverse.

• For each a ∈ G, (a−1)−1 = a

• For every, a, b ∈ G, (a ∗ b)−1 = b−1 ∗ a−1.

• Let a, b, c ∈ G. Then if a ∗ b = a ∗ c, b = c.

1.1.1 Permutation Groups

Let Ωn = {1, 2, . . . , n}. As an ordered set Ωn = (1, 2, . . . , n) has n! rearrangements. We may
think of these permutations as being functions f : Ωn → Ωn. These are bijections.

Observe that the set Sn of all permutations of n objects forms a group under composition
of order n!.
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Small Finite Groups Small groups can be pictured using a multiplication table, where
the row element is multiplied on the left of the column element.

In a multiplication table of finite group each row must be a permutation of the elements
of the group, because:

• If we had repetition in a row (or column), so that xa = xb, then the cancellation rule
will give a = b. Hence each element occurs no more than once in a row (or column).

• If a2 = a then multiplying by a−1 gives a = e, so the identity is the only element that
can be fixed.

1.2 Fields

A field (F,+,×) is a set F with two binary operations on it, addition (+) and multiplcation
(×), where

1. (F,+) is an abelian group,

2. F∗ = F \ {0} is an abelian group under multiplication,

3. The distributive laws a× (b+ c) = a× b+ a× c and (a+ b)× c = a× c+ b× c hold.

Additional Notes

• Our definition is equivalent to saying F satisfies the 12 = 5 + 5 + 2 number laws.

• We use juxtaposition for the multiplication in fields and 1 for the identity under mul-
tiplication.

• The smallest possible field has two elements, and is written {0, 1} with 1 + 1 = 0.

Finite Fields The only finite fields are those of size pk for some prime p (referred to as
the characteristic of the field) and positive integer k. These fields are called Galois fields of
size pk, GF(pk). Note that GF(pk) 6= Zpk unless k = 1.

Properties of Fields Let F be a field and a, b, c ∈ F. Then

• a0 = 0

• a(−b) = −(ab)

• a(b− c) = ab− ac

• if ab = 0 then either a = 0 or b = 0.

1.3 Subgroups and Subfields

Subgroups Let (G, ∗) be a group and H a non-empty subset of G. If H is a group under
the restriction of ∗ to H, we call it a subgroup of G. We write this as H ≤ G and say H
inherits the group structure from G.
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The Subgroup Lemma Let (G, ∗) be a group and H a non-empty subset of G. Then H
is a subgroup of G if and only if

1. for all a, b ∈ H, a ∗ b ∈ H

2. for all a ∈ H, a−1 ∈ H.

i.e. H is closed under ∗ and −1.
Note that every non-trivial group G has at least two subgroups: {e} and G.

General Linear Groups Let n ≥ 1 be an integer. The set of invertible n × n matrices
over field F is a group under matrix multiplication. This is a special case of a bijection
function f : S → S with S = Fn and is non-abelian if n > 1.

It is called the general linear group, GL(n, f).
The groups GL(n,R) and GL(n,C) are especially important in this course. They have

many important subgroups, such as

• the special linear groups SL(n,R) and SL(n,C) of matrices with determinant 1.

• O(n) ≤ GL(n,R) the group of orthogonal matrices.

• SO(n) = O(n) ∩ SL(n,R) of special orthogonal matrices.

Subfields If (F,+,×) is a field and E ⊆ F is also a field under the same operations
(restricted to E), then (E,+,×) is a subfield of (F,+,×), usually written E ≤ F.

The Subfield Lemma Let E 6= {0} be a non-empty subset of field F. Then E is a subfield
of F if and only iff for all a, b ∈ E:

a+ b ∈ E, −b ∈ E, a× b ∈ E, b−1 ∈ E if b 6= 0.

Rational + Irrational Field Let α be any (non-rational) real or complex number. We
defined Q(a) to be the smallest field containing both Q and α. Such fields are important in
number theory and can clearly be generalised to e.g. Q(α, β). For example, it can be shown

Q(
√

2) = {a+ b
√

2 : a, b ∈ Q}

1.4 Morphisms

A morphism is a category of ”nice” maps between the members.

Homomorphism Let (G, ∗) and (H, ◦) be two groups. A (group) homomorphism from G
to H is a map φ : G→ H that respects the two operations, that is where

φ(a ∗ b) = φ(a) ◦ φ(b) for all a, b ∈ G.
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Isomorphism A bijective homomorphism φ : G→ H is called an isomorphism: the groups
are then said to be isomorphic. That is, G ∼= H.

Isomorphism Lemmas Let (G, ∗) and (H, ◦) be two groups and φ a homomorphism
between them. Then

• φ maps the identity of G to the identity of H.

• φ maps inverses to inverse, i.e. φ(a−1) = (φ(a))−1 for all a ∈ G.

• if φ is an isomorphism from G to H then φ−1 is an isomorphism from H to G.

Images and Kernel Let φ : G → H be a group homorphism, with e′ the identity of H.
The kernel of φ is the set

ker(φ) = {g ∈ G : φ(g) = e′}
The image of φ is the set

im(φ) = {h ∈ H : h = φ(g), some g ∈ G}.
Note that kerφ ≤ G and imφ ≤ H.

One-to-One Homomorphism A homomorphism φ is one-one if and only if kerφ = {e},
with e the identity of G. If φ is one-one then im(φ) is isomorphic to G.

Linear Groups A common use of group homomorphisms is to look for a homomorphism
φ : G → GL(n,F) for some n and some field F. The group im(φ) is called a (linear)
representation of G on Fn. If φ is one-one (so every element maps to a distinct matrix), we
call the representation faithful.

2 Vector Spaces

2.1 Vector Spaces

Motivation for Vector Spaces The concept of a vector space is a natural and important
generalisation of Rn. It is natural to consider them whenever possible to add objects and
multiply them by scalars.

It may be convenient to consider a field F as a vector space over one of its subfields.

Vector Spaces Let F be a field. A vector space over the field F consists of an abelian
group (V,+) plus a function from F × V to V called scalar multiplication and written αv
where

1. α(βv) = (αβ)v for all α, β ∈ F for all v ∈ V .

2. 1v = v for all v ∈ V .

3. α(u + v) = αu + αu for all α ∈ F for all u,v ∈ V .

4. (α + β)u + αu + βu for all α, β ∈ F for all u ∈ V .
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Properties and Notation for Vector Spaces

1. There are ten axioms here: 5 from the abelian group, closure of scalar multiplication
and the four explicit ones.

2. Addition in V is called vector addition to distinguish it from the addition in F.

3. Being a group, V cannot be empty.

4. Bold face letters are used to distinguish elements of V from elements of F.

Vector Space Lemma Let V be a vector space over a field F. For all v,w in V and
λ ∈ F:

1. 0v = 0 and λ0 = 0.

2. (−1)v = −v.

3. λv = 0 implies either λ = 0 or v = 0.

4. if λv = λw and λ 6= 0 then v = w.

2.2 Standard Examples of Vector Spaces

The Space Fn over F The set Fn consists of all n-tuples of elements of F:

Fn =


α1

...
αn

 : αi ∈ F

 .

If x = (αi)1≤i≤n,y = (βi)1≤i≤n are elements of Fn, then vector addition on Fn is defined as

x + y = (αi + βi)1≤i≤n.

Scalar multiplication on Fn is λx = (λαi)1≤i≤n.
With these operations, Fn is a vector space over F.

Geometric Vectors Geometric vectors are ordered pairs of points in Rn, joined by labelled
arrows. We add these objects by placing them head to tail and scalar multiplying is just
stretching the vector’s length while preserving the direction.

The set of all geometric vectors does not form a vector space. However, if you define
2 geometric vectors to be equivalent if one is a translation of the other then the set of
equivalence classes of geometric vectors is a vector space.

Matrices For any positive integers p and q the set Mp,q(F) is the set of p × q matrices
with element from F. Then Mp,q(F) is a vector space over F with vector addition the usual
addition of matrices and scalar multiplication multiplying each element of the matrix.
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Polynomials The set of all polynomials with coefficients in F,P(F), is a vector space over
F with

(f + g)(x) = f(x) + g(x) for all x ∈ F
(λf)(x) = λf(x) for all λ, x ∈ F

Similarly, Pn(F) (polynomials of degree n or less) is a vector space over F.

Function Spaces Let X be a non-empty set and F be a field. Then define

F [X] = {f : X → F}.

The set F [X] is a vector space over F if we define

• the vzero in F [X] to be the vzero function: x→ 0 for all x ∈ X

• (f + g)(x) = f(x) + g(x) for all x ∈ X

• (λf)(x) = λ(f(x)) for all x ∈ X

Exotic Example Let V = R+, the set of positive real numbers. Define addition and scalar
multiplication on V by

v ⊕ w = vw, α ⊗ v = vα

Then with these operations, V is a vector space over R whose addition and multiplication
and whose scalar multiplication is exponentiation.

2.3 Subspaces

Subspaces If V is a vector space over F and U ⊆ V , then U is a subspace of V , written
U ≤ V , if it is a vector space over F with the same addition and scalar multiplication as in
V .

Every vector space has {0} (the trivial subspace) and itself as subspaces.

Subspace Test Lemma Suppose V is a vector space over the field F and U is a non-empty
subset of V . Then U is a subspace of V if and only if for all u,v ∈ U and α ∈ F, αu+v ∈ U .

2.4 Linear Combinations, Spans and Independence

Linear Combination Let V be a vector space over F. A (finite) linear combination of
vectors v1,v2, . . . ,vn in V is any vector which can be expressed

α1v1 + α2v2 + · · ·+ αnvn

where the αk are scalars.
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Span If S is a subset of V , then the span of is

span(S) = { all finite linear combinations of vectors in S}.

We say that S spans V , or is a spanning set for V , if span(S) = V .
If S is a non-empty subset of a vector space V , then span(S) is a subspace of V .

Linear Independence A subset S of a vector space V is linearly independent if for all
vectors v1,v2, . . . ,vn in S (with n ≥ 1) the equation

α1v1 + α2v2 + · · ·+ αnvn = 0

with αi ∈ F, implies αi = 0 for all i = 1 . . . n.

Linear Dependence Lemma If S = {v1, . . . ,vn} is a linearly dependent set of non-zero
vectors in V then there is an i, 2 ≤ i ≤ k such that

vi =
i−1∑
j=1

βjvj.

In other words in a ordered linearly dependent set at least one vector is a linear combination
of its predecessors.

Properties of Linear Independence, Dependence and Spanning Sets In any vector
space

1. Any subset of a linearly independent set is linearly independent.

2. (a) If v ∈ span(S) and v /∈ S, then S ∪ {v} is linearly dependent.

(b) If S is linearily independent and S ∪ {v} is linearly dependent then v ∈ span(S).

3. (a) If S1 ⊆ S2, then span(S1) ⊆ span(S2).

(b) If S1 ⊆ span(S2), then span(S1) ⊆ span(S2).

4. span(S ∪ {v}) = span(S) if and only if v ∈ span(S).

5. If S is linearly dependent, then there is a vector v in S such that span(S \ {v}) =
span(S).

6. In Fp, if P ∈ GL(p,F) is an invertible matrix and {vi} linearly independent, then the
set {Pvi} is also linearly independent.

2.5 Bases

Let S ⊆ V . The set S is a basis for V over F if and only if V = span(S), and S is a linearly
independent set.
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2.5.1 Examples of Bases

Fn over F The standard basis of Fn as a vector space over F is B = {ei : 1 ≤ i ≤ n} where

ei =



0
...
0
1
0
...
0


← ith place, written

1

← i

We also use i, j,k as the standard basis of R3.

Matrix Spaces Define the matrices

Eij = (ehl) =

{
1 h = 1 and l = j.

0 otherwise.

The set
B = {Eij : 1 ≤ i ≤ p, 1 ≤ j ≤ q},

is the standard basis of Mp,q(F) as a vector space over F.

Polynomial Spaces The standard basis of Pn(F) as a vector space over F is

B = {1, t, . . . , tn}.

Function Spaces The space F(X) has no obvious basis unless X is finite.
Let X = {a1, . . . , an}, and for each i for i = 1, . . . , n define fi : X → F by

fi(aj) = δij =

{
1 if i = j

0 i 6= j

The set B = {f1, f2, . . . , fn} is a basis for F(X).
(We call the δij defined here the Kronecker delta symbol.)

Fields The set {1, i} is a basis for C as a vector space over R. Similarly, Q(
√

2) as a vector
space over Q has a basis {1,

√
2}.

2.6 Dimension

Elements of Bases If vector space V admits a finite spanning set, it admits a finite basis
and all bases contain the same number of elements.
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Basis and Spanning Sets Let V be a vector space over F and S a finite spanning set.
Then S contains a finite basis for V .

The Exchange Lemma Suppose that S is a finite spanning set for V and that T is a
(finite) linearly independent subset of V with |T | ≤ |S|. Then there is a spanning set S ′ of
V such that

T ⊆ S ′ and |S ′| = |S|.

Independent Set Size If S is a finite spanning set for a vector space V and T is a linearly
independent subset of V , then T is finite and |T | ≤ |S|.

In other words, independent sets are no larger than spanning sets.

Linearly Independent Sets to Basis Let V be a vector space over F with a finite
spanning set and T a linearly independent subset of V . Then there is a basis B of V which
contains T .

Dimension The dimension of a vector space V is the size of a basis if V has a finite basis
or infinity otherwise. The notation is dim(V ) = n or dim(V ) =∞.

Properties Let V be a finite dimensional vector space and suppose dim(V ) = n.

1. The number of elements in any spanning set is at least n.

2. The number of elements in any independent set is no more than n.

3. If span(S) = V and |S| = n then S is a basis.

4. If S is a linearly independent set and |S| = n then S is a basis.

Combinations, Spanning and Independence Let V be a finite dimensional vector
space over F. Then B = {v1, . . . ,vn} is a basis for V if and only if every x ∈ V can be
written uniquely as x =

∑n
i=1 αivi, α1 ∈ F.

2.7 Coordinates

Coordinate Suppose V is a vector space of dimension n over F and B = {v1, . . . ,vn} is
an ordered basis of V over F. If v ∈ V then v =

∑n
i=1 αivi with the αi unique.

We call α =

α1
...
αn

 the coordinate vector of v with respect to B, and refer to the αi as

the coordinates of v. A useful notation is

α = [v]B if v =
n∑
i=1

αivi.
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Properties of Coordinates

1. u = v if and only if [u]B = [v]B for all bases B.

2. [u + v]B = [u]B + [v]B for any basis B.

3. [λu]B = λ[u]B for any basis B.

2.8 Sums and Direct Sums

Definitions The sum S + T of two subspaces is defined as

S + T = {a + b : a ∈ S,b ∈ T}.

If S ∩ T = {0} then we call the sum a direct sum and denote it as S ⊕ T .

Direct Sum The sum of subspaces S and T is direct if and only if any vector x ∈ S + T
can be written in a unique way as x = a + b, a ∈ S,b ∈ T .

Dimensions of Sum of Subspaces Suppose S and T are finite dimensional subspaces of
vector spaces V . Then

dim(S) + dim(T ) = dim(S + T ) + dim(S ∩ T ).

For a direct sum of finite dimensional spaces

dim(S) + dim(T ) = dim(S ⊕ T )

Complementary Subspace Let V be a finite dimensional vector space and X ≤ V . Then
there is a subspace Y for which V = X ⊕ Y .

External Direct Sum Let X and Y be two vector spaces over the same field F. The
Cartesian product X×Y can be made into a vector space over F with the obvious definitions

(x1,y1) + (x2,y2) = (x1 + x2,y1 + y2) and λ(x1,y1)v = (λx1, λy1)

With this structure we call the Cartesian product the (external) direct sum of X and Y ,
X ⊕ Y .

3 Linear Transformations

3.1 Linear Transformations

Linear Transformation Suppose V and W are vector spaces over the field F. A function
T : V → W is a linear transformation or a linear map (or simply linear) if

• T (u + v) = T (u) + T (v), and

• T (λv) = λT (v),

for all u,v ∈ V and for all λ ∈ F.
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Identity Map, Zero Vector and Negatives Let V and W be vector spaces over the
field F.

• The identity map, id : V → V defined by id(v) = v is linear.

• If T : V → W is linear then T (0) = 0 and T (−v) = −T (v).

Linearity Test Lemma A function T : V → W between vector spaces over the same field
F is linear if and only if

T (λu + v) = λT (u) + T (v)

for all λ ∈ F, and u,v ∈ V .

Linear Transformations are Vector Spaces Let V and W be two vector spaces over
field F. The set L(V,W ) of all linear transformations from V to W is a vector space under
the operations

(S + T )(v) = S(v) + T (v), (λS)(v) = λS(v).

Composition of Linear Maps Let T : V → W and S : W → X be linear maps between
vector spaces. Then S ◦ T : V → X is also linear.

Linearity of Inverse Let T : V → W be an invertible linear map between two vector
spaces over field F. Then T−1 : W → V is linear.

Invertible Linear Maps are Groups The invertible linear maps in L(V, V ) form a group
under compositions. Note that composition of maps is always associative so and the inverse
exists by definition of L(V, V ), only closure and the identity need to be proved.

Closure exists since composition of linear transformations are vector spaces. The identity
map is linear and clearly invertible and so, also exists in the group.

Taking Coordinates is Linear Let V be a (finite-dimensional) vector space over F with
a basis B = {v1, . . . ,vp}. Then the function S : V → Fp defined by S(x) = [x]B is linear.

3.2 Kernel and Image

Kernel Let T : V → W be a linear transformation. The kernel (or nullspace) of T is the
set

kerT = {v ∈ V : T (v) = 0}.

Image If U ≤ V then the image of U is the set

T (U) = {T (u) : u ∈ U}.

We also define the image of T (or range of T ), im(T ) as the image of all of V : im(T ) = T (V ).
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Kernal and Image of Linear Transformations Let T : V → W be a linear transfor-
mation between vector spaces over F and U ≤ V . Then

1. kerT is a subspace of V .

2. T (U) is a subspace of W , and so im(T ) ≤ W .

3. If U is finite-dimensional, so is T (U), so if V is finite dimensional, so is im(T ).

Rank and Nullity If T is a linear transformation, then the dimension of the kernel of T
is called the nullity of T , and the dimension of its image is called the rank of T .

Nullity - One to One A linear map T : V → W is one-to-one if and only if nullity(T ) = 0.

Rank-Nullity Theorem If V is a finite dimensional vector space over F and T : V → W
is linear then

rank(T ) + nullity(T ) = dim(V ).

Bijective, Injective, Surjective Let V,W be vector spaces over F with dim(V ) =
dim(W ) finite and T : V → W be linear. The following are equivalent:

• T is invertible (bijective).

• T is one-ton-one (injective) i.e. nullity(T ) = 0.

• T is onto (subjective) i.e. rank(T ) = dim(V ).

Isomorphism An invertible linear map T : V → W is called an isomorphism of the vector
spaces V and W .

Isomorphism + Dimensions Finite dimension vector spaces V and W over F are iso-
morphic if and only if they have the same dimension.

3.3 Spaces Associated with Matrices

Kernel, Image, Nullity and Rank Let A be a p × q matrix over field F, and define a
map T : Fq → Fp by T (x) = Ax. The kernel, image, nullity and rank of A are by definition
the same as those of this map T .

Column Space Suppose A has columns c1, . . . , cq (all in Fp). Then

im(A) = {Ax : x ∈ Fq}
= {x1c1 + · · ·xqcq : xi ∈ F}
= ({c1, . . . , cq})

That is, im(A) is the space spanned by the columns of A: the column space of A, col(A), a
subspace of Fp. The rank of A is thus the dimension of the column space of A.
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Rank-Nullity Theorem for Matrices For A ∈ Mp,q(F), rank(A) + nullity(A) = q, the
number of columns of A.

Row Space The row space of A, row(A), is defined similarly as the space spanned by the
rows: it is a subspace of Fq. Note that row(A) = col(AT ) = im(AT ).

Row and Col Spaces Let A ∈ Mp,q(F). The spaces row(A) and col(A) have the same
dimension.

3.4 The Matrix of a Linear Map

Matrices of Linear Maps Let V,W be two finite dimensional vector spaces over F.
Suppose dim(V ) = q and V has basis B and also dim(W ) = p and W has basis C. If
T : V → W is linear then there is a unique A ∈Mp,q(F) with

[T (v)]C = A[v]B.

Conversely, for any A ∈Mp,q(F), the equation defines a unique linear map from V to W .

Notation We call A in the above theorem the matrix of T with respect to B and C. A
useful notation is to denote this matrix by [T ]BC and then the equation takes the form

[T (v)]C = [T ]BC [v]B.

Dimension of Linear Map If dim(V ) = q and dim(W ) = p then dim(L(V,W )) = pq.

Composition of Linear Maps as Matrices Let T : V → W and S : W → X be linear
maps between vector spaces and suppose V,W and X have bases A,B, C respectively. Then,
the matrix S ◦ T : V → X is the product of the matrices of T and S, all taken with respect
to the appropriate bases:

[S ◦ T ]AC = [S]BC · [T ]AB .

Inverting Matricies as Transformations If T : V → W is linear and invertible, the
matrix of T−1 is the inverse of the matrix of T . Thus the group of invertible linear maps on
an n-dimensional vector space over F is isomorphic to GL(n,F). Formally,

[T−1]CB = ([T ]BC )−1.

Change of Basis Matrix If vector space V has two bases B and C, the matrix [id]BC of
the identity map is called the change of basis matrix (from B to C). This can be used to
change coordinates:

[v]C = [id]BC [v]B.
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Rank and Nullity of Matrices Let T : V → W be a linear map between finite dimen-
sional vector spaces over F and A its matrix with respect to any two bases in V and W .
Then

nullity(A) = nullity(T ) and rank(A) = rank(T ).

Invariant Subspace Let V be a vector space over F and T : V → V a linear map. If
X ≤ V is such that T (X) ≤ X, we call X and invariant subspace of T .

Linear Maps of Invariant Subspaces Let T : V → V be a linear map on a finite
dimensional vector space. Suppose V = X ⊕ Y with both X and Y invariant subspaces of
T with dimensions p and q respectively. Then there is a basis B for V in which the matrix
[T ]BB of T is of the form

[T ]BB =

(
A 0
0 B

)
with A a p× p and B a q × q matrix.

3.5 Similarity

Definition Matrices A and B in Mp,p(F) are similar if there exists a matrix P ∈ GL(p,F)
such that B = P−1AP .

Similar Matrices over Different Bases Matrices A1 and A2 are similar if and only if
they are the matrices of the same linear transformation with respect to two choices of bases.

Similarity Invariant A property of matrices is called a similarity invariant if it is the
same for all similar matrices.

The determinant, rank, nullity and trace of matrices are all similarity invariants.

3.6 Multilinear Maps

Bilinear Let V1, V2 and W be vector spaces over field F. A map T : V1 × V2 → W is
bilinear if it is linear in each argument, that is

T (λv1 + v′1,v2) = λT (v1,v2) + T (v′1,v2)

T (v1, λv2 + v′2) = λT (v1,v2) + T (v1,v
′
2)

for all suitable vectors and scalars. If V2 = V1 we call T bilinear on V1.

Symmertric and Alternating Multilinear Maps A multilinear map T on V is said to
be symmetric if its value on any ordered set of vectors is unchanged when any two of the
vectors are swapped. If such a swap always simply changes the sign of the value, T is called
alternating.
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4 Inner Product Spaces

4.1 The Dot product in Rp

Positive Definite A bilinear F-valued map, T , on Fp is positive definite if for all a ∈
Fp, T (a, a) ≥ 0 and T (a, a) = 0 if and only if a = 0.

Cauchy-Schawrz Inequality in Rp For any a,b ∈ Rp we have

−||a||||b|| ≤ a · b ≤ ||a||||b||.

If a 6= 0,b 6= 0 then

−1 ≤ a · b
||a||||b||

≤ 1.

Angle between Two Vectors If a,b ∈ Rn are non-zero then the angle θ between a and
b is defined by

cos θ =
a · b
||a||||b||

, θ ∈ [0, π]

We call non-zero vectors a and b orthogonal if a · b = 0.

Orthogonal Complement Let X ≤ Rp for some p. The space

Y = {y ∈ Rp : y · x = 0 for all x ∈ X}

is called the orthogonal complement of X,X⊥

Orthogonal Sets A set S = {v1, . . . ,vk} ⊆ Rp of non-zero vectors is orthogonal if vi · j =

0, i 6= j. We say S is orthonomral if vi · vj = δij =

{
0 i 6= j

1 else
.

An orthogonal set S in Rp is linearly independent.

The Triangle Inequality For a,b ∈ Rp - ||a + b|| ≤ ||a||+ ||b||.

4.2 Dot product in Cp

Dot Product The standard dot product on Cp is defined by

a · b
p∑
i=1

aibi = aTb.

Notation We will use a∗ as a useful shorthand for aT from now on, so that a · b = a∗b.
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Properties of the Dot Product The standard dot product on Cp has the following
properties:

1. a · (λb + c) = λa · b + a · c for λ ∈ C.

2. b · a = a · b.

3. (λb + c) · a = λb · a + c · a for λ ∈ C.

4. ||a|| ≥ 0 and ||a|| = 0 ⇐⇒ a = 0.

4.3 Inner Product Spaces

Inner Product If V is a vector space over F then an inner product on V is a function
〈, 〉 : V × V → F, that is, for all u,v ∈ V 〈u,v〉 ∈ F, such that

IP1 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉.

IP2 〈u, αv〉 = α〈u,v〉.

IP3 〈v,u〉 = 〈u,v〉.

IP4 〈v,v〉 is real and > 0 if v 6= 0 and = 0 if v = 0.

We call V with 〈, 〉 an inner product space.
The norm of the vector is then ‖v‖ = 〈v,v〉1/2.

Properties of the Inner Product Let V be an inner product space. Then for u,v,w ∈ V
and α ∈ C:

1. ‖u‖ > 0 if and only if u 6= 0.

2. 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉.

3. 〈αu,v〉 = α〈u,v〉 and ‖αu‖ = |α|‖u‖.

4. 〈x,u〉 = 0 for all u if and only if x = 0.

5. |〈u,v〉 ≤ ‖u‖‖v‖ (Cauchy - Schwarz inequality).

6. ‖u‖v ≤ ‖u‖+ ‖v‖ (The Triangle Inequality).

4.4 Orthogonality and Orthonormality

Orthogonal Let V be an inner product space. Non-zero vectors u and v are orthogonal
if 〈u, v〉 = 0; we will use the notation u ⊥ v for this.

A set S = {v1, . . . ,vk} ⊆ V of non-zero vectors is orthogonal if 〈vi,vj〉 = 0, i 6= j.

Orthonormal We say S is orthonormal if 〈vi,vj〉 = δij =

{
1 i = j

0 i 6= j
.
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Projection In inner product space V let v 6= 0. The projection of u ∈ V onto v is defined
as

projv(u) =
〈v,u〉
〈v,v〉

v.

Note: u− αv ⊥ v ⇐⇒ u− αv = u− projvu.

Orthogonal and Orthonomral Sets If S = {v1, . . . ,vk} is an orthogonal set of non-zero
vectors in inner product space V and v ∈ span(S) then v =

∑k
i=1 projvi

v.

If S is an orthonormal set v =
∑k

i=1〈vi,v〉vi.

Orthonormal Basis If {e1, . . . , en} is an orthonormal basis for V then v =
∑n

i=1〈ei,v〉ei.

4.5 The Gram-Schmidt Process

Gram-Schmidt Process Every finite dimensional inner product space has an orthonom-
ral basis.

The process uses this idea to transform any basis into an orthnoromal basis. Suppose
S = {v1, . . . ,vp} is a basis for V over F. Then

w1 = v1

w2 = v2 − projw1
(v2)

w3 = v3 − projw1
(v3)− projw2

(v3)

...
... . . . . . . . . . . . . . . .

...

wk+1 = vk+1 −
k∑
j=1

projwj
(vk+1)

where W = {w1, . . . ,wk} forms an orthonomal basis.

4.6 Orthogonal Complements

Orthogonal Complement Let X ≤ V for some inner product space V . The space

Y = {y ∈ V : 〈y,x〉 = 0 for all x ∈ X}

is called the orthogonal complement of X,X⊥.

Existence of Orthogonal Complement Suppose V is a finite dimensional inner product
space, W ≤ V and v ∈ V then

v = a + b, a ∈ W,b ∈ W⊥

where a and b are unique.
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Properties of the Projection In finite dimensional product space V with W ≤ V :

• If v ∈ V then v − projw(v) is in W⊥.

• If w ∈ W then projW (w) = w. Consequently, the projection mapping is idempotent:
that is, (projW ) ◦ (projW ) = projW .

• For all w ∈ V we have ||projW (v)|| ≤ ||v||.

• The function projW + proj(W⊥) is the identity function of V .

Length Inequality Let W be a subspace of a finite-dimensional inner product space V ,
and let v ∈ V . For every w ∈ W we have

||v −w|| ≥ ||v − projW (v)||,

with equality if and only if w = projW (v), i.e.v −w ∈ W⊥.

4.7 Adjoints

Linear Maps If (V, 〈, 〉) is a finite dimensional inner product space and T : V → F is
linear then there is a unique vector t ∈ V such that for all v ∈ V, T (v) = 〈t,v〉.

Adjoint Linear Maps For any linear map T : V → W between finite-dimensional inner
product spaces, there is a unique linear map T ∗ : W → V called the adjoint of T with

〈w, T (v)〉 = 〈T ∗(w),v〉

for all v ∈ V and w ∈ W .

Identity Adjoint For any inner product space, V , the identity map on V is its own
adjoint.

Adjoint Properties Suppose that V and W are finite-dimensional inner product spaces;
let S and T be linear transformations from V to W . Then

1. (S + T )∗ = S∗ + T ∗

2. for any scalar α we have (αT )∗ = αT ∗;

3. (T ∗)∗ = T .

4. if U : W → X is linear then (U ◦ T )∗ = T ∗ ◦ U∗

Change of Basis Let V and W be finite-dimensional inner product spaces with orthonor-
mal bases B and C respectively. If A is the matrix of the linear transformation T : V → W
with respect to bases B and C, then the matrix of T ∗ : W → V with respect to bases C and
B is the adjoint of A.
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4.7.1 Maps with Special Adjoints

Unitary, Isometry and Self-Adjoint Let T : V → V be a linear map on a finite-
dimensional inner product space V . The T is said to be

• unitary if T ∗ = T−1

• an isometry if ||T (v)|| = ||v|| for all v ∈ V ;

• self-adjoint or Hermitian if T ∗ = T .

Unitary Properties

1. A map T is unitarty if and only if T ∗ is unitary.

2. The set of all unitary transformations on V forms a group under composition.

Unitary and Isometry Maps Let T be a linear map on a finite-dimensional inner product
space V . Then the following are equivalent:

1. T is an isometry;

2. 〈T (v), T (w)〉 = 〈v,w〉 for all v,w ∈ V (i.e. T preserves inner products);

3. T is unitary (i.e. T ∗ ◦ T is the identity);

4. T ∗ is an isometry;

5. if {e1, . . . , en} is an orthonormal basis for V then so is {T (e1), . . . , T (en)}.

Unitary, Hermitian, Orthogonal and Symmetric Matrices A matrix A ∈ Mp,p(C)
is called unitary if A∗ = A−1 and Hermitian if A∗ = A. A matrix A ∈ Mp,p(R) is called
orthogonal if AT = A−1 and symmetric if AT = A.

Orthonormal Basis and Unitary The columns of a p × p matrix are an orthonormal
basis of Cp if and only if A is unitary. The columns of a p × p matrix are an orthonormal
basis of Rp if and only if A is orthogonal. The same result apply to rows.

4.8 QR Factorisations

QR Factorisation If A is p× q of rank q so (p ≥ q) then we can write A = QR where Q
is an p× q matrix with orthonormal columns, and R is an q × q invertible upper triangular
matrix.

QR Factorisation with Q̃ Square Matrix Let A ∈Mp,q(F) with p > q and rank(A) = q.
Then we can write A = Q̃R̃, with Q̃ being p× p unitary (or orthogonal), and R̃ being p× q,
of rank q and in echelon form.
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4.9 Least Squares

Normal Equations A least squares solution to the system of equations Ax = b is a
solution to the equations A∗Ax = A ∗ b which are known as the normal equations.

5 Determinants

Odd and Even Permutations If a permutation σ = [p1, p2, . . . , pn] of Ωn contains k
inversions then its sign, sign(σ) = (−1)k. A permutation is called even or odd depending on
whether the number of inversions is even or odd.

Determinant The determinant of an n× n matrix A = (aij)ij=1,...,n is

det(A) =
∑
σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · · anσ(n).

Difference Product Define the nth difference product ∆n by

∆n =
n∏

i=1,j>1

(i− j)

= (1− 2)(1− 3) . . . (1− n)(2− 3)(2− 4) . . . ((n− 1)− n)

Signs Changed Equal Inversions For any σ ∈ Sn, σ(∆n) = sign(σ)∆n.

Sign of Compositions If α, β ∈ Sn then sign(α ◦ β) = sign(α)sign(β), and sign(α−1) =
sign(α).

Transpositions are Odd Every transposition (i.e. swap of two elements) in ∫n is odd.

Properties of Determinant Let A ∈Mp,p. Then

1. det(A) =
∑

σ∈Sn sign(σ)aσ(1)1aσ(2)2 · · · aσ(n)n.

2. det(A) = det
(
AT
)

and det(A∗) = ¯det(A)

3. If any row or column of A is zero det(A) = 0.

4. If a permutation is applied to the rows or columns of A, then the determinant is
multiplied by the sign of the permutation.

5. If A has two rows or two columns the same, then det(A) = 0.

6. If any row or column of A has a multiple of another row or column (respectively) added
to it, the determinant is unchanged.
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Multilinear and Alternating If det is considered as a map on the rows or columns of a
matrix (that is, from p copies of Fp to F), then it is multilinear and alternating.

We note a useful special case of this last result, namely if any row or column of A is
multiplied by a constant α, then the determinant is multiplied by α.

Matrix Minors For A ∈ Mp,p(F) let Aij be the matrix obtained by deleting row i and
column j. We call Aij the (i, j)−minor of A.

Determinant Minor Property Suppose that row i of matrix A ∈Mp,p(F) is zero except
for entry aij. Then

det(A) = (−1)i+jaij det(Aij).

Determinant of Triangular Maticies The determinant of an upper or lower triangular
matrix is the product of its diagonal elements.

Elementary Row Operations and Matricies An elementary row operation on a matrix
is one of the following:

1. swapping two rows

2. multiplying one row by a non-zero scalar

3. adding a multiple of one row to another

An elementary matrix is a matrix obtained from an identity matrix after an elementary row
operation.

Invertible Matrices with Sequence of Elementary Matrices If A is invertible there
is a sequence of elementary matrices E1, E2, . . . , Ek such that

A = E1E2 · · ·Ek and det(A) =
k∏
i=1

det(Ei).

Determinant of Invertible Matrices A matrix A is invertible if and only if det(A) 6= 0.
If A is invertible, then det(A−1) = 1

det(A)
.

Determinant of Products For any two matrices A and B, det(AB) = det(A) det(B).

Zero Determinant A matrix A has determinant zero if and only if it has linearly depen-
dent columns and hence if ando nly if it has linearly dependent rows.

Cofactor In matrix A the number cij = (−1)i+j det(Aij) is called the cofactor of element
aij.
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Cofactor Expansion For any A ∈Mp,p(F) and any fixed j,

det(A) =

p∑
i=1

aijcij.

Adjugate For A ∈ Mp,p(F) the adjugate (also called the classical adjoint and adjunct) of
A, adj(A) is the transpose of the matrix of cofactors adj(A)ij = cji.

For an invertible matrix, A,A−1 =
adj(A)

det(A)
.

6 Eigenvalues and Eigenvectors

6.1 Eigenvalues and Eigenvectors

Definitions Suppose T ∈ L(V, V ) :

1. if T (v) = αv,v ∈ V, α ∈ F,v 6= 0 then α is an eigenvalue of T,v is an eigenvector for
T corresponding to α.

2. If λ is an eigenvalue of T , then the eigenspace of T,Eλ(T ) = {v ∈ V : T (v) = λv}.

3. We call the set of all eigenvalues of T the spectrum of T .

Notes

1. Eigenvectors are never zero.

2. Eλ(T ) = {0} ∪ { all eigenvectors corresponding to λ}.

3. Each eigenspace is invariant under T.

Properties of Eigenvalues Let T : V → V be linear. Then

1. Eλ(T ) = ker(λid− T ).

2. If λ1, . . . , λk are distinct eigenvalues and T (vi) = λivi, then v1, . . . ,vk are linearly
independent.

3. If λ 6= µ then Eλ(T ) ∩ Eµ(T ) = {0}.

Diagonalisable A matrix A ∈ Mp,p(F) is diagonalisable over F if there is an invertible
matrix P ∈ GL(p,F) such that P−1AP is diagonal - that is, A is similar over F to a diagonal
matrix. A linear map T : V → V is diagonalisable if there is a basis of V with respect to
which the matrix of T is diagonal.

24



Diagonalisability Regarding Basis If T ∈ L(V, v) where V is a finite dimensional vector
space over F, then T is diagonalisable if and only if V has a basis whose elements are all
eigenvectors of T . Similarly, A ∈ Mp,p(F) is diagonalisable if and only if Fp has a basis
consisting of eigenvectors of A.

Diagonalisability Regarding Eigenvalues A p × p matrix with p distinct eigenvalues
is diagonalisable.

6.2 The Characteristic Polynomial

Definition If A is a p× p matrix over F then the characteristic polynomial of A is

cpA(t) = det(tI − A).

Similarity Invariant The characteristic polynomial is a similarity invariant.

Characteristic Polynomials of Maps If V is finite dimensional and T ∈ L(V, V ) the
characteristic polynomial of T, cpT (t), is defined to be cpA(t) for any matrix A of T .

Properties with Linear Maps Suppose T ∈ L(V, V ), with dimV = n. Then

1. λ is an eigenvalue if and only if cpT (λ) = 0.

2. W ≤ Eλ(T ) implies W is T -invariant.

3. λ is an eigenvalue if and only if nullity(T − λid) > 0.

Eigenvalues with Basis Let T : V → V be linear on finite dimensional space V , and B
be a basis for V . Let A be the matrix of T with respect to B. The following are equivalent:

• v is an eigenvector of T corresponding to eigenvalue λ;

• the coordinate vector [v]B is an eigenvector of A corresponding to eigenvalue λ.

Diagonalisation Algorithm Given matrix A

1. Calculate cpA(t).

2. Find all roots α of cpA(t).

3. For each α, calculate dim(Eα(A)).

4. If
∑

α dim(Eα(A)) = n then A is diagonalizable.

5. If A is diagonalisable construct P , whose columns are a basis of V consisting of eigen-
vectors of A so that D = P−1AP is diagonal.
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6.3 Multiplicities

Geometric and Algebraic Multiplicity Suppose T is a linear map on finite dimensional
vector space V . Suppose further that λ is an eigenvalue of T so that t− λ is a factor of the
characteristic polynomial of T .

• The geometric multiplicity (g.m.) of λ is dim(Eλ(T )).

• The algebraic multiplicity (a.m.) of λ is its multiplicity as a factor of cpT (t).

Let T : V → V be linear on finite dimensional space V and λ an eigenvalue of T . Then

1 ≤ geometric multiplicity λ ≤ algebraic multiplicity λ.

Solutions, Determinant and Trace with Eigenvalues Suppose A ∈ Mp,p(C). Then
A has p eigenvalues α1, . . . , αp counting algebraic multiplicities. Also

det(A) =

p∏
i=1

αi and tr(A) =

p∑
i=1

αi.

Equivalent Properties Let T : V → V be linear on finite dimensional space V . The
following four statements are equivalent:

1. T is diagonalisable.

2. There is a basis for V consisting of eigenvectors for T .

3. V = Eλ1(T ) ⊕ Eλ2(T ) ⊕ · · · ⊕ Eλk(T ) where λ1, . . . , λk are the distinct eigenvalues of
T .

4. The sum of the geometric multiplicities of the distinct eigenvalues is dimV . That is,

k∑
j=1

dimEλj(T ) = dimV.

Diagonalizable Distinct Roots Linear map T on a p-dimensional space V over F is
diagonalizable if cpT (t) has p distinct roots in F.

6.4 Normal Operators

Normal Definition A linear transformation on an inner product space is normal if and
only if T ∗ ◦ T = T ◦ T ∗ and an n× n matrix is normal if and only if A∗A = AA∗.
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Inner Product Spaces and Normal Linear Maps Let V be a finite dimensional inner
product space and T a normal linear map on V . Then

(a) For all v ∈ V, ||T (v)|| = ||T ∗(v)||

(b) For any scalar, α, (T − αid) is also normal.

(c) If T has eigenvalue λ then λ is an eigenvalue of T ∗.

(d) Eλ(T ) = Eλ(T
∗).

(e) If λ 6= µ then Eλ(T ) ⊥ Eµ(T ).

Algebraic and Geometric Multiplicity If T is normal with eigenvalue λ then the al-
gebraic multiplicity of λ equals the geometric multiplicity of λ.

The Spectral Theorem for Normal Operators If V is a finite dimensional inner prod-
uct space over C and T ∈ L(V, V ) is normal then there is an orthonormal basis B of V
consisting of eigenvectors of T . Hence if A ∈ Mp,p(C) is normal there is a unitary P such
that P−1AP = P ∗AP is diagonal. Conversely if [T ]BB = A = PDP−1, with D diagonal and
P unitary (so B is orthonormal) then both A and T are normal.

Normal Operators and Matricies If A is normal with eigenvalues λi, then there are
matrices Pi with

A =
∑
i

λiPi, P 2
i = Pi = P ∗i ,

PiPj = 0 i 6= j,
∑
i

Pi = id.

6.5 Self-Adjoint Maps and Matrices

Self-Adjoint, Hermitian and Symmetric Suppose V is a finite dimensional inner prod-
uct space over field F (where F is R or C) and T ∈ L(V, V )).

a) If T is self-adjoint (that is Hermitian if F = C or symmetric if F = R) then the
eigenvalues of T are real.

b) If F = C and T is Hermitian there is a unitary basis for V consisting of eigenvectors
of T .

c) If F = R and T is symmetric, then there is a real orthonormal basis of V consisting of
eigenvectors of T .
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6.6 Unitary and Orthogonal Maps and Matrices

Eigenvalues and Eigenvectors of a Unitary Map Suppose V is a p-dimensional inner
product space over field F (where F is R or C), with T ∈ L(V, V ) a unitary map. Then the
eigenvalues of T lie on the unit circle in C, that is are eiαk for real αk and V has a unitary
basis of eigenvectors of T .

Isometries Suppose T is an isometry on a real inner product space V . Then its charac-
teristic polynomial is of the form

cpT (t) = (t− 1)a(t+ 1)b
k∏
j=1

(t− eiαj)(t− e−iαj)

where a+ b+2k = dim(V ) and αj ∈ (0, π). Also there is an orthonormal basis of V in which
the matrix of T is of the form

Ia ⊕ (−Ib)
k⊕
j=1

R(αj).

6.7 The Singular Value Decomposition

Singular Value Decomposition (SVD) Let A ∈Mp,q(C). A singular value decomposi-
tion of A is a factorization of A as U

∑
V ∗ where U and V are square and unitary and

∑
is a p× q matrix with zero off diagonal terms and diagonal entries called the singular values
satisfy

σ1 ≥ σ2 ≥ · · · ≥ σq ≥ 0.

The columns of U are called left singular vectors and the columns of V right singular vectors.

Kernel and Rank Let A ∈Mp,q(F) for F either R or C. Then

a) ker(A ∗ A) = ker(A)

b) rank(A ∗ A) = rank(A)

Existence of SVD For any matrix A an SV D exists and the singular values are unique.

Reduced Singular Value Decomposition If A ∈ Mp,q(C) is rank k then the reduced
singular value decomposition is the decomposition

A = ÛΣ̂V̂ ∗

where Û and V̂ have orthonormal columns and Σ̂ is k × k invertible and diagonal.

Orthonormal Basis For any p× q matrix of rank k:

a) The last q − k right singular vectors are an orthonormal basis of ker(A).

b) The first k left singular vectors are an orthonormal basis of im(A).

c)
∑k

i=1 ω
2
i = tr(A∗A) =

∑p
i=1

∑q
j=1 |aij|2.
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Pseudoinverse For an arbitrary A with reduced SVD ÛΣ̂V̂ ∗ we define the pseudoinverse
of A,A+ by

A+ = V̂ Σ̂−1Û∗.

Least Squares The least squares solution to Ax = b for A of full rank is given by x =
A+b.

7 Canonical Forms

7.1 Similarity Invariants

Generalised Eigenvector Let A ∈ Mp,p(C) and λ be an eigenvalue of A. Then v ∈ Cp

is a generalised eigenvector (for eigenvalue λ) iff

v ∈ ker(A− λI)k, for some integer k ≥ 1.

Generalised Eigenspace The generalised eigenspace of λ,GEλ(A), is the space of all
generalised eigenvectors of eigenvalue λ.

Complete Set of Similarity Invariants The collection of all the integers nullity(A−λI)k

for all the eigenvalues λ and all integers k ≥ 1 is a complete set of similarity invariants of A.

7.2 The Generalised Eigenspaces

Notation for Eigen Subspaces Let T ∈ L(V, V ) and suppose λ is an eigenvalue of T .
For each integer j, define the spaces Vj(λ) = ker(T − λid)j.

Maximum Growth of Vm If for T ∈ L(V, v) and some eigenvalue λ and integer m ≥ 1
we have Vm+1(λ) = Vm(λ) then Vm+`(λ) = Vm(λ) for all integers ` ≥ 1.

Height of Eigenspace Let λ be an eigenvalue of T ∈ L(V, V ), where dim(V ) = p is finite.
Then there is a least a integer h, the height of λ, with 1 ≤ h ≤ p such that

GEλ(T ) = ker(T − λid)h.

Increasing Dimension of Generalised Eigenspaces Let λ be an eigenvalue of T ∈
L(V, V ), where dim(V ) = p is finite. Define

dk = dim(Vk(λ)) = nullity(T − λid)k,

then
0 = d0 < d1 < d2 < · · · < dh−1 < dh = dh+` ≤ dim(V ),

for all positive integers `.
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Transformation in Subspace With the previous notation for k > 1 if

v ∈ Zk(λ) \ {0} then (T − λid)(v) ∈ Vk−1(λ) \ Vk−2(λ).

Definition of Zk We can find non-trivial Subspaces Zk(λ) of V such that

Vk(λ) = Vk−1(λ)⊕ Zk(λ) for k = 2, 3, . . . , h,

and we define Z1(λ) = V1(λ) = ker(T − λid).

Difference in Dimension With the same notation as above

d1 − d0 ≥ d2 − d1 ≥ d3 − d2 ≥ · · · ,

i.e.
dim(Z1(λ)) ≥ dim(Z2(λ)) ≥ dim(Z3(λ)) ≥ · · · .

Jordan Chain A ordered set of non-zero vectors {v1,v2, . . . , vvk} such that

T (v1) = λv1 and T (vi) = λvi + vi−1 if1 < i ≤ k

is called a Jordan chain (of length k) for eigenvalue λ. We will call a Jordan chain maximal
if it is not part of a longer chain.

Jordan Blocks A matrix of the shape of Jk(λ) below is called Jordan block (for eigenvalue
λ).

Jk(λ) =


λ 1 · · · 0 0
0 λ · · · 0 0
...

...
. . .

...
...

0 0 · · · λ 1
0 0 · · · 0 λ


Jordan Matrix A matrix consisting of a direct sum of Jordan blocks is called a Jordan
matrix.

Jordan Basis A basis with respect to which the matrix of T ∈ L(V, V ) is a Jordan matrix
is called a Jordan basis of T .

Properties of the Span of a Jordan Chain Let U = span{v1,v2, . . . ,vk} be the space
spanned by a Jordan chain of length k for eigenvalue λ. Then U is invariant under T , i.e.
T (U) ⊆ U . Furthermore, if we write U = X ⊕ Y for some X and Y both invariant under T
then either X or Y is trivial.

7.3 Decomposition of a Space

Invariant Kernel and Image Let S and T be linear transformations on a vector space
V , and suppose that S ◦ T = T ◦ S. Then the kernel and image of S are invariant under T .
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Indecomposable Invariant Subspace Let T : V → V be a linear map and U ≤ V be
an invariant subspace. If U is indecomposable with respect to T then it is indecomposable
with respect to T |U , with the restriction of T to U .

Properties by Subtracting Multiplies of the Identity Let T : V → V be a linear
map and λ be a scalar. Define S = T − λid. Then U ≤ V is

a) invariant under S if and only if it is invariant under T ;

b) decomposable with respect to S if and only if it is decomposable with respect to T .

The Decomposition Lemma Let T be a linear transformation on a vector space V of
non-zero finite dimension. Then for some integer m ≥ 1, there exist T -invariant subspaces
U1, . . . , Um, each indecomposable with respect to T , such that

V = U1 ⊕ · · · ⊕ Um.

Kernel-Image Decomposition If T is a linear map on a finite-dimensional space V , then
there exists a positive integer m such that

V = (kerTm)⊕ (imTm).

The Jordan Form Let T be a linear transformation on a non-zero, finite-dimensional
complex vector space V . Then there is a basis of V with respect to which the matrix of T
is a Jordan matrix.

Definition of Jordan Form The matrix of T in a Jordan basis is called a Jordan (canon-
ical) form of T .

Jordan Chains as Similarity Invariants The number and lengths of the maximal Jor-
dan chains are similarity invariants.

Splitting Spaces Equals Independent Eigenvectors Equals Maximal Jordan Chains
The number of splitting spaces in The Decomposition Lemma, is the same as the number
of Independent eigenvectors, which is the same as the number of maximal Jordan chains in
any Jordan basis.

Jordan Form Similarity Invariant The Jordan form is a complete similarity invariant
for complex matrices.
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7.3.1 The Technical Proofs

Recall the following definition and results:

a) For T : V → V, U ≤ V is indecomposable and invariant w.r.t T ;

b) T |U : U → U is thus well defined and has an eigenvalue λ;

c) S : U → U is defined as S = T |U − λid;

d) k is the smallest positive integer such that Sk is the zero map on U ;

e) u ∈ U is some vector with Sk−1(u) 6= 0;

f) B = {u, S(u), S2(u), . . . , Sk−1(u)} is independent.

g) W = span(B)

Existence of S(v) ∈ X With the given notation, if X is a subspace of U such that

S(X) ⊆ X, W ∩X = {0}, W ⊕X 6= U,

then there exists v ∈ U such that

v ∈ W ⊕X and S(v) ∈ X.

W is equal to U With the above notation, W = U .

7.4 More on the Jordan Form

Properties of the Jordan Form

a) The eigenvalues of T are the λi in its Jordan form and conversely.

b) The number of Jordan blocks for each eigenvalue λi is the geometric multiplicity of λi.

c) The algebraic multiplicity of an eigenvalue is the sum of the sizes of all the Jordan
blocks for that eigenvalue.

d) The height, hi, of eigenvalue λi is the size of the largest Jordan block for λi, hi ≤ ai
and (T − λiid)hi is the zero map on each splitting space for λi.

e) Each of the splitting spaces for T consists of generalised eigenvectors.

f) ker(T − λiid)k for k ≥ hi is the generalised eigenspace of λi.

g) GEλ(T ) is spanned by the union of the Jordan chains for eigenvalue λ, and dim GEλ(T )
is the algebraic multiplicity of λ.

h) V is the direct sum of all the generalised eigenspaces for T ∈ L(V, V ).

All these results have equivalent matrix formulations.
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7.4.1 Matrix Polynomials

The Caylet-Hamilton Theorem For any matrix A ∈Mp,p(C), cpA(A) is zero.

Maximal Dimension of Matrix Powers The space spanned by {I, A,A2, A3, . . . } is at
most p-dimensional.

Minimal Polynomial The polynomial mpA(t) =
∏m

i=1(t − λi)
hi is called the minimal

polynomial of A.
It is the monic polynomial of least degree for which this is true.

7.5 Calculating the Jordan Form

Properties for Finding Jordan Form

• We know d1 − d0 = d1 = nullity(A− λI) is the number of Jordan blocks.

• The value of d2 − d1 will tell us how many chains of length at least 2 we have.

• Generalising dk − dk−1 tells us how many chains of length at least k we have.

• The horizontal layers correspond to the spaces Zj and the vertical stacks correspond
to the Jordan chains.

Matricies with One Eigenvalue If matrix A ∈Mp,p(C) has only one eigenvalue, λ, then
GEλ(A) = Cp. Furthermore, if such an A is diagonalisable then it is λI.

8 Matrix Functions and ODEs

8.1 Powers and the Jordan Form

Powers of Matricies

• If A = PBP−1, then An = PBnP−1.

• If M = A⊕B then Mn = An ⊕Bn.

• If Av = λv then Anv = λnv.

Binomial Theorem for Commuting Matricies Let A and B be p × p matrices for
which AB = BA. Then for any integer n ≥ 0 we have

(A+B)n = An +

(
n

1

)
An−1B +

(
n

2

)
An−2B2 + · · ·+Bn.

33



8.2 Power Series of Matrices

Convergence Entrywise Definition Suppose A(k) =
(
a
(k)
ij

)
for k = 1, 2, 3, . . . is a

sequence of p×q matrices then we say A(k) converges entrywise to A as k →∞ iff a
(k)
ij → aij

as k →∞ for all i, j.

Norms on Matrices Let A ∈Mp,p(C).
The ∞-norm of A is defined by

||A||∞ = max{|aij| : 1 ≤ i, j ≤ p}.

The operator norm (or 2-norm) of A is defined as

||A||op = max{||Av|| : v ∈ Cp and ||v|| = 1},

The Frobenius norm of A is defined as ||A||F =
√

tr(A ∗ A), which is the same as√∑
i,j |aij|2.

Operator and Forenius Norm Relationship Suppose A ∈ Mp,p(C) has non-zero sin-

gular values σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0. Then ||A||op = σ1 and ||A||F =
√
σ2
1 + · · · σ2

k. It
follows that for all such A,

||A||op ≤ ||A||F ≤
√
p||A||op.

Forenius and Infinity Norm For any matrix A ∈Mp,p(C) we have

||A||F ≥ ||A||∞ ≥
1

p
||A||F .

Convergence in Norm Suppose N is some norm on p×p matrices and A(k) is a sequence
of p× p matrices. Then we say A(k) converges to A in the norm N iff N(A(k) − A)→ 0 as
k →∞.

Norm Equivalance A sequence of p× p matrices A(k) converges to A in the ∞-norm iff
it converges to A in the Frobenius norm iff it converges to A in the operator norm.

Convergence Entrywise by ∞-norm A sequence A(k) tends to A entrywise if and only
if it converges to A in the ∞-norm.

∞-norm Products Let A and B be p× p complex matrices. Then

||AB||∞ ≤ p||A||∞||B||∞.

Convergence is Preserved Under Similarity Suppose sequence A(k) ∈ Mp,p(C) con-
verges to A and P is p× p and invertible. Then the sequence B(k) = P−1A(k)P converges to
B = P−1AP .
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Convergence of Power Series Suppose f : C→ C has a power series expansion f(t) =∑∞
k=0 akt

k with a radius of convergence R, (Rpossibly∞). Then if A ∈ Mp,p(C),
∑
akA

k

converges provided p||A||∞ < R. The limit is then called f(A).

Power Series Properties Suppose f : C→ C has a power series expansion. Then

1. If f(A) is defined and B = PAP−1, then f(B) is defined and f(B) = Pf(A)P−1.

2. If M = A⊕B and f(A) and f(B) are defined, so is f(M) and f(M) = f(A)⊕ f(B).

3. If f(A) is defined and Av = λv then f(λ) is defined and f(A)v = f(λ)v.

8.3 The Matrix Exponential

Matrix Exponential Definition Suppose A ∈Mn(C). Then

eA = exp(A) = I + A+
1

2!
A2 + · · · =

∞∑
k=0

1

k!
Ak.

Dervivative of The Matrix Exponential For any A ∈Mp,p(C), exp(tA) is differentiable
and

d

dt
exp(tA) = Aexp(tA) = exp(tA)A.

Solution to Inital Value Problem Let A ∈Mp,p(C) and c ∈ Cp; then

y(t) = etAc

is a solution of the initial value problem

y′ = Ay, y(0) = c.

Invertible is Inverse For each t and any A, etA is invertible and has inverse e−tA.

Uniqueness of Solution Let A ∈Mp,p(C). Then

1. If y′ = Ay and y(0) = 0, then y ≡ 0.

2. The set of solutions of y′ = Ay is a vector space of dimension p and the columns of
etA form a basis for this space.

3. The initial value problem y′ = Ay,y(0) = c has a unique solution y = etAc.

Commutitivity If A,B in Mp,p(C) commute (AB = BA) then

exp(A+B) = exp(A) · exp(B).
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8.4 The Column Method

For a generalised eigenvector, v, finding etAv only involves a finite summation.
If A has only one eigenvalue, λ say, then

etA = eλt(I + t(A− λI) + · · ·+ 1

(k − 1)!
tk−1(A− λI)k−1)

where the largest Jordan block is k × k, since every vector is a generalised eigenvector and
in ker((A− λI)k).

8.5 Systems of Homogeneous Linear ODEs

Fundamental Matrix A square matrix whose columns are independent as functions of t
and are solutions of y′ = Ay is called a fundamental matrix for the system and is denoted
by φ(t).
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