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1 Assumed Knowledge

• the definition of complex numbers,

• their arithmetic,

• Cartesian and polar representations,

• the Argand diagram,

• de Moivre’s theorem, and

• extracting nth roots of complex numbers.

2 Inequalities and Sets of Complex Numbers

2.1 Equalities and Inequalities

Modulus Squared of a Sum For all complex numbers w and z,

|w + z|2 = |w|2 + 2 Re(wz̄) + |z|2.

Triangle Inequality For all complex numbers w and z,

|w + z| ≤ |w|+ |z| ∀w, z,∈ C.

Circle Inequality For all complex numbers w and z,

||w| − |z|| ≤ |w − z|.

Modulus of ez If z ∈ C, then
|ez| = eRe(z).

Modolus of ez − 1 inequality For all real numbers θ,

|eiθ − 1| ≤ |θ|.

2.2 Properties of Sets

Open Ball The open ball with centre z0 and radius ε, written B(z0, ε), is the set {z ∈ C :
|z − z0| < ε}.

Punctured Open Ball The punctured open ball with centre z0 and radius ε, written
B◦(z0, ε), is the set {z ∈ C : 0 < |z − z0| < ε}.
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Interior, Exterior and Boundary Points Suppose that S ⊆ C. For any point z0 in C,
there are three mutually exclusive and exhaustive possibilities:

(1) When the positive real number ε is sufficiently small, B(z0, ε) is a subset of S, that is,
B(z0, ε) ∩ S = B(z0, ε). In this case, z0 is an interior point of S.

(2) When the positive real number epsilon is sufficiently small, B(z0, ε) does not meet S,
that is, B(z0, ε) capS = ∅. In this case, z0 is an exterior point of S.

(3) No matter how small the positive real number ε is, neither of the above holds, that is,
∅ ⊂ B(z0, ε) ∩ S ⊂ B(z0, ε). In this case, z0 is a boundary point of S.

Open, Closed, Closure, Bounded, Compact, Region Sets Suppose that S ⊆ C.

(1) The set S is open if all its points are interior points.

(2) The set S is closed if it contains all of its boundary points, or equivalently, if its
complement C \ S is open.

(3) The closure of the set S is the set consisting of the points of S together with the
boundary points of S.

(4) The set is bounded if S ⊆ B(0, R) for some R ∈ R+

(5) The set S is compact if it is both closed and bounded.

(6) The set S is a region if it is an open set together with none, some, or all of its boundary
points.

2.3 Arcs

Polygonal Arc A polygonal arc is a finite sequence of finite directed line segments, where
the end point of one line segment is the initial point of the next one.

Simple Closed Polygonal Arc A simple closed polygonal arc is a polygonal arc that
does not cross itself, but the final point of the last segment is the initial point of the first
segment.

Interior and Exterior Arc The complement of a simple closed polygonal arc is made up
of two pieces: one, the interior of the arc, is bounded, and the other, exterior is not.

Polygonally Path-connectedness Let X ⊆ C be a subset of the complex plane.

(1) The set X is polygonally path-connected if any two points of X can be joined by a
polygonal arc lying inside X.

(2) The set X is simply polygonally connected if it is polygonally path-connected and if
the interior of every simple closed polygonal arc in X lies in X, that is, if ”X has no
holes”.

(3) The set X is a domain if it is open and polygonally path-connected.
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3 Functions of a Complex Variable

Complex Function A complex function is one whose domain, or whose range, or both,
is a subset of the complex plane C that is not a subset of the real line R.

Complex Polynomial A complex polynomial is a function p : C→ C of the form

p(z) = adz
d + · · ·+ a1z + a0,

where ad, . . . , a1, a0 ∈ C. If ad 6= 0, we say that p is of degree d. A rational function is a
quotient of polynomials.

The Fundamental Theorem of Algebra Every nonconstant complex polynomial p of
degree d factorizes: there exists α1, α2, . . . , αd and c in C such that

p(z) = c
d∏
j=1

(z − aj).

Polynomial Division and Partial Fractions Suppose that p and q are polynomials.
Then

p(z)

q(z)
= s(z) +

r(z)

q(z)
,

where r and s are polynomials, and the degree of r is strictly less than the degree of q.
Further, if

q(z) = c
e∏
j=1

(z − βj)mj ,

then we may decompose the term r/q into partial fractions:

r(z)

q(z)
=

e∑
j=1

mj∑
k=1

ajk
(z − βj)k

.

Real and Imaginary Parts To a function f : S → C, where S ⊆ C, we associate two
real-valued functions u and v of two real variables:

f(x+ iy) = u(x, y) + iv(x, y).

Then u(x, y) = Re f(x+ iy) and v(x, y) = Im f(x+ iy).

3.1 The function w = 1/z

Consider the mapping w = 1/z.

(1) The image of a line through 0 (with the origin removed) is a line through 0 (with the
origin removed).
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(2) The image of a line that does not pass through 0 is a circle (with the origin removed).
If p is the closest point on the line to 0, then the line segment between 0 and 1/p is a
diameter of the circle.

(3) The image of a circle that passes through 0 is a line. If q is the furthest point on the
circle from 0, then the closest point on the line to 0 is 1/q.

(4) The image of a circle that does not pass through 0 is a circle. If p and q are the closest
and furthest point on the circle from 0, then the closest and furthest point on the image
circle to 0 are 1/q and 1/p.

3.2 Fractional Linear Transformations

Factorising Matrices Every 2× 2 complex matrix with determinant 1 may be written as
a product f at most three matrices of the following special types:(

a b
0 d

)
and

(
0 1
−1 0

)
.

Image of Lines and Circles Let TM be a fractional linear transformation. Then the
image of a line under TM is a line or a circle, and the image of a circle under TM is also a
line or a circle.

4 Limits and Continuity

4.1 Limits

Definition of a Limit Suppose that f is a complex function and that z0 is in Domain(f)−.
We say that f(z) tends to ` as z tends to z0, or that ` is the limit of f(z) as z tends to z0,
and we write f(z)→ ` as z → z0, or

lim
z→z0

f(z) = `,

if, for every ε ∈ R+, there exists δ ∈ R+ such that |f(z) − `| < ε provided that z is in
Domain(f) and 0 < |z − z0| < δ.

Limit within a Subset Suppose also S is a subset of Domain(f) and that z0 ∈ S̄. We
say that f(z) tends to ` as z tends to z0 in S, or that ` is the limit of f(z) as z tends to z0

in S, and write f(z)→ ` as z → z0 in S, or

lim
z→z0
z∈S

f(z) = `,

if, for every ε ∈ R+, there exists δ ∈ R+ such that |f(z) − `| < ε provided that z ∈ S and
0 < |z − z0| < δ.
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Limits at Infinity Suppose that f is a complex function, that ` ∈ C ⊂ {∞}, and that
either z0 ∈ Domain(f)− or Domain(f) is not bounded and z0 =∞. We say that f(z) tends
to ` as z tends to z0, or that ` is the limit of f(z) as z tends to z0, and we write f(z) → `
as z → z0, or

lim
z→z0

f(z) = `,

if for all ε ∈ R+, there exists δ ∈ R+ such that f(z) ∈ B(`, ε) provided that z ∈ B◦(z0, δ).

Standard Limits Suppose that α, c ∈ C. Then

lim
z→α

c = c

lim
z→α

z − c = α− c

lim
z→α

1

z − α
=∞

lim
z→∞

c = c

lim
z→∞

z − α =∞

lim
z→α

1

z − α
= 0

Lemmas on Limits

1. Suppose that f is a complex function, that T ⊆ S ⊆ Domain(f), and that z0 ∈ T̄ . If
limz→z0

z∈S
f(z) exists, then so does limz→z0

z∈T
f(z), and they are equal.

2. Suppose that f is a complex function, and that z0 ∈ Domain(f)−. If limz→z0 f(z)
exists, then it is unique.

Algebra of Limits Suppose that f and g are complex functions and that c ∈ C. Then

lim
z→z0

cf(z) = c lim
z→z0

f(z)

lim
z→z0

f(z) + g(z) = lim
z→z0

f(z) + lim
z→z0

g(z)

lim
z→z0

f(z)g(z) = lim
z→z0

f(z) lim
z→z0

g(z)

lim
z→z0

f(z)

g(z)
=

limz→z0 f(z)

limz→z0 g(z)
,

in the sense that if the right hand side exists, then so does the left hand size and they are
equal. In particular, for the quotient, we require that limz→z0 g(z) 6= 0.

Limits and Complex Conjugation Suppose that f is a complex function and that either
Domain(f) is unbounded and z0 =∞ or z0 ∈ Domain(f)−. Then

lim
z→z0

¯f(z) = ¯lim
z→z0

f(z)

lim
z→z0

Re(f(z)) = Re lim
z→z0

f(z)

lim
z→z0

Im(f(z)) = Im lim
z→z0

f(z)

lim
z→z0

f(z) = lim
z→z0

Re(f(z)) + i lim
z→z0

Im(f(z)),
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in the sense that if the right hand side exists, then so does the left hand size, and they are
equal. In particular, f(z) tends to ` as z tends to z0 if and only if Re(f(z)) tends to Re(`)
and Im(f(z)) tends to Im(`) as z tends to z0.

4.2 Continuity

Definition Suppose that the complex function f is defined in a set S ⊆ C, and that z0 ∈ S.
We say that f is continuous at z0 if

lim
z→z0

f(z) = f(z0);

that is, the limit exists, f(z0) exists, and they are equal.
We say that f is continuous in S if it is continuous at all points of S, and continuous if

it is continuous in its domain.

Properties of Continuous Functions

• Suppose that c ∈ C, and that f : S → C and g : S → C are continuous complex
functions in S ⊆ C. Then cf, f + g, |f |, f̄ ,Re f, Im f and fg are continuous in S, as is
f/g provided that g(z) 6= 0 for any z in S.

• Suppose that f : S → C and g : T → C are continuous complex functions in S ⊆ C
and T ⊆ C. Then f ◦ g is continuous where it is defined, that is, in {z ∈ T, g(z) ∈ S}.

Continuity and Boundedness Suppose that the set S ⊆ C is compact (i.e., closed and
bounded) and that f is a continuous complex function defined on S. Then there exists a
point z0 in S such that

|f(z0)| = max{|f(z)| : z ∈ S}.

The Log Function The function Log : C \ {0} → C is defined by

Log(z) = ln |z|+ iArg(z).

5 Complex Differentiability

Definition Suppose that S ⊆ C and that f : S → C is a complex function. Then we say
that f is differentiable at the point z0 in S if

lim
z→z0

f(z)− f(z0)

z − z0

, or equivalently lim
h→0

f(z0 + h)− f(z0)

h
,

exists. If it exists, it is called the derivative of f at z0, and written f ′(z0) or
df(z0)

dz
.
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5.1 The Cauchy-Riemann Equations

Definition Suppose that Ω is an open subset of C, that f is a complex function defined
in Ω, that f(x+ iy) = u(x, y) + iv(x, y), where u and v are real-valued functions of two real
variables, adn that f is differentiable at z0 ∈ Ω. Then the partial derivative

∂u

∂x
(x0, y0),

∂u

∂y
(x0, y0),

∂v

∂x
(x0, y0),

∂v

∂y
(x0, y0)

all exists, and

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0).

Further,

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0).

Differentiability by Cauchy-Riemann If the four partial derivatives ∂u/∂x, ∂v/∂x, ∂u/∂y
and ∂v/∂y are all continuous in an open set Ω, then f is complex differentiable at z0 ∈ Ω if
and only if the Cauchy-Riemann equations hold at z0, and if so, then

f ′(x0 + iy0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0).

5.2 Properties of the Derivative

Differentiability Implies Continuity Suppose that f is a complex function and that
z0 ∈ Domain(f). If f is differentiable at z0, then f is continuous at z0.

Algebra of Derivatives Suppose that z0 ∈ C, that the complex functions f and g are
differentiable at z0, and that c ∈ C. Then the functions cf, f + g and fg are differentiable
at z0 and

(cf)′(z0) = cf ′(z0),

(f + g)′(z0) = f ′(z0) + g′(z0),

(fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0).

Further, if g(z0) 6= 0, then the function f/g is differentiable at z0, and(
f

g

)′
(z0) =

f ′(z0)g(z0)− f(z0)g′(z0)

g(z0)2
.

Composed Functions Suppose that z0 ∈ C, that the complex function f is differentiable
at g(z0), and that the complex functiong ios differentiable at z0. Then the function f ◦ g is
differentiable at z0, and

(f ◦ g)′(z0) = f ′(g(z0))g′(z0).
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L’Hôpital’s Rule Suppose that z0 ∈ C∪{∞} and that the complex functions f and g are
differentiable at z0. If limz→z0 f(z)/g(z) is indeterminate, that is, of the form 0/0 or ∞/∞,
and if limz→z0 f

′(z)/g′(z) exists, then

lim
z→z0

f(z)

g(z)
= lim

z→z0

f ′(z)

g′(z)
.

Consequences of the Cauchy-Riemann Equations Suppose that f is differentiable in
a domain Ω in C. Then

(a) if f ′ = 0 in Ω, then f is constant on Ω;

(b) if |f | is constant, then f is constant on Ω;

(c) if Re(f) or Im(f) is constant, then f is constant on Ω.

Polar Coordinates Suppose that the complex function f is differentiable at the point
z0 ∈ C \ {0}, and that z0 = r0e

iθ0 . Then

∂u

∂θ
(r0, θ0) = −r0

∂v

∂r
(r0, θ0) and

∂v

∂θ
(r0, θ0) = r0

∂u

∂r
(r0, θ0).

Further,

f ′(z0) = e−iθ0
(
∂u

∂r
(r0, θ0) + i

∂v

∂r
(r0, θ0)

)
=
−ie−iθ0

r

(
∂u

∂θ
(r0, θ0) + i

∂v

∂θ
(r0, θ0)

)
.

Log is Differentiable The function Log is differentiable in C \ (−∞, 0].

5.3 Inverse Functions

Differentiability of Inverse Functions Suppose that Ω and g are open subsets of C,
that f : Ω → g is one-to-one, and that f(z0) = w0. If f is differentiable at z0 and f−1 is
differentiable at w0, then (f−1)′(w0) = 1/f ′(z0).

5.4 Differentiable Definition

Holomorphic Suppose that Ω is an open subset of C and f : Ω → C is a function. If f
is differentiable in Ω, that is, if it is differentiable at every point of Ω, then we say that f is
holomorphic or (complex) analytic or regular in Ω, and we write f ∈ H(Ω).

Entire If Ω = C and f is differentiable in Ω, then we say that f is entire.
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6 Harmonic Functions

Harmonic Functions Suppose that u : Ω → R is a function, where Ω is an open subset
of R2, and that u is twice continuously differentiable, that is, all the partial derivatives
∂u/∂x, ∂u/∂y, ∂2u/∂x2, ∂2u/∂x∂y, ∂2u/∂y∂x and ∂2u/∂y2 exists and are continuous. Then
we say that u is harmonic in Ω if

∂2u

∂x2
+
∂2u

∂y2
= 0.

Finding Harmonic Functions Suppose that f ∈ H(Ω), where Ω is an open subset of C,
that f is twice continuously differentiable in Ω, and that

f(x+ iy) = u(x, y) + iv(x, y)

in Ω, where u and v are real-valued. Then u and v are harmonic functions.

Existence of Harmonic Functions If Ω is a simply polygonally connected domain, and
u : Ω→ R is harmonic, then there exists a harmonic function v : Ω→ R such that f , given
by

f(x+ iy) = u(x, y) + iv(x, y)

in Ω is holomorphic. Any two such functions v differ by an additive constant.

Harmonic Conjugate The function v is called a harmonic conjugate of u. The function
f may often be determined using the fact that

f ′(x+ iy) = ux(x, y) + ivx(x, y) = ux(x, y)− iuy(x, y).

7 Power Series

Definition A (complex) power series is an expression of the form

∞∑
n=0

an(z − z0)n,

where the centre z0 and the coefficients an are all fixed complex numbers, and the variable
z is complex. We take (z − z0)0 to be 1 for all z, even when z = z0.

Radius of Convergence Every power series
∑∞

n=0 an(z−z0)n has a radius of convergence
ρ, given by the formulae

ρ =
(

lim
n→∞

sup |an|1/n
)−1

=

(
lim
k→∞

sup
n≥k
|an|1/n

)−1

.

The radius of convergence ρ ∈ [0,+∞] satisfies:
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(a)
∑∞

n=0 an(z − z0)n converges if |z − z0| < ρ

(b)
∑∞

n=0 an(z − z0)n does not converge if |z − z0| > ρ

(c)
∑∞

n=0 an(z − z0)n may converge for no, some or all z such that |z − z0| = ρ.

The Ratio Test The radius of convergence is given by

ρ = lim
n→∞

|an|
|an+1|

,

as long as the limit exists or is +∞.

The Root Test The radius of convergence is given by

ρ = lim
n→∞

1

|an|1/n
.

as long as the limit exists or is +∞.

The Algebra of Power series Suppose that
∑∞

n=0 an(z − z0)n and
∑∞

n=0 bn(z − z0)n

converge in B(z0, ρ) to f(z) and g(z), and that c ∈ C. Then the following series also
converge in B(z0, ρ):

(a)
∑∞

n=0 can(z − z0)n, and its sum is cf(z);

(b)
∑∞

n=0(an + bn)(z − z0)n, and its sum is f(z) + g(z);

(c)
∑∞

n=0 cn(z − z0)n, where cn =
∑n

j=0 ajbn−j, and its sum is f(z)g(z).

Power Series are Differentiable Suppose that f(z) =
∑∞

n=0 an(z− z0)n in B(z0, ρ) and
ρ > 0. Then f is differentiable in B(z0, ρ), and

f ′(z) =
∞∑
n=1

ann(z − z0)n−1 =
∞∑
m=0

am+1(m+ 1)(z − z0)m

in B(z0, ρ).

Repeatedly Differentiating Power Series Suppose that f(z) =
∑∞

n=0 an(z − z0)n in
B(z0, ρ). Then f may be differentiated as many times as desired, and

f (k)(z) =
∞∑
n=k

n(n− 1) . . . (n− k + 1)an(z − z0)n−k.

In particular,
f (k)(z0) = k!ak

. Further, the real valued functions u and v, such that f(x + iy) = u(x, y) + iv(x, y), may
be differentiated as many times as desired, and all their partial derivatives are continuous.
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Power Series that Vanish on an Interval Suppose that g(z) =
∑∞

n=0 an(z − z0)n in
B(z0, ρ), and that ε > 0. If g(z0 + t) = 0 for all real t in (−ε, ε), then g(z) = 0 for all z in
B(z0, ρ).

Power Series that are Equal near the Centre Suppose that f(z) =
∑∞

n=0 an(z− z0)n

and moreover that g(z) =
∑∞

n=0 bn(z − z0)n in B(z0, ρ). If f(z0 + t) = g(z0 + t) for all
t ∈ (−ε, ε), then f(z) = g(z) for all z ∈ B(z0, ρ).

8 Exponential, Hyperbolic and Trigonometric Func-

tions

8.1 The Exponential Function

Definition We define the exponential series by the formula

exp(z) =
∞∑
n=0

zn

n!
∀z ∈ C.

Properties of the Exponential Series

1. exp(0) = 1;

2. exp(z + w) = exp(z) exp(w) for all z, w ∈ C;

3. exp(−z) = exp(z)−1 for all z ∈ C;

4. exp(z) 6= 0 for all z ∈ C;

5. exp′(z) = exp(z) for all z ∈ C;

6. if a function f : C → C satisfies f(0) = 1 and f ′(z) = f(z) for all z ∈ C, then
f(z) = exp(z) for all z ∈ C;

7. exp(x+ iy) = ex(cos(y) + i sin(y)) for all x, y ∈ R.

Periodicity of the Exponential Mapping The exponential exp maps C onto C \ {0},
and exp(z1) = exp(z2) if and only if z1 − z2 ∈ 2πiZ.

8.2 The Hyperbolic Functions

Definition We define the complex hyperbolic cosine and sine by the formulae

cosh(z) =
exp(z) + exp(−z)

2
=
∑
n∈N

z2n

(2n)!
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and

sinh(z) =
exp(z)− exp(−z)

2
=
∑
n∈N

z2n+1

(2n+ 1)!

for all z ∈ C.

Properties of the Hyperbolic Sine and Cosine

(i) cosh(−z) = cosh(z)

(ii) sinh(−z) = − sinh(z)

(iii) cosh′(z) = sinh(z)

(iv) sinh′(z) = cosh(z)

(v) cosh(z + 2πik) = cosh(z)

(vi) sinh(z + 2πik) = sinh(z)

(vii) cosh(z + w) = cosh(z) cosh(w) + sinh(z) sinh(w)

(viii) sinh(z + w) = sinh(z) cosh(w) + cosh(z) sinh(w)

(ix) cosh2(z)− sinh2(z) = 1

(x) cosh(x+ iy) = cosh(x) cos(y) + i sinh(y) sin(y)

(xi) sinh(x+ iy) = sinh(x) cos(y) + i cosh(x) sin(y).

for all w, z ∈ C, all k ∈ Z and all x, y ∈ R.

8.3 The Trigonometric Functions

Definition We define the complex cosine and sine by the formulae

cos(z) =
exp(iz) + exp(−iz)

2
=
∑
n∈N

(−1)nz2n

(2n)!

and

sin(z) =
exp(iz)− exp(−iz)

2i
=
∑
n∈N

(−1)nz2n+1

(2n+ 1)!

for all z ∈ C.

9 Logarithms and Roots

Square Root We define the principle value of the square root as:

PVw1/2 =

{
|w|1/2eiArg(w)/2 if w 6= 0

0 if w = 0.

14



Logarithm Suppose that w = ez and z = x+ iy. Then w = exeiy, so

|w| = ex and Argw = Argeiy.

Then x = ln |w|, and x is single-valued, but y = Arg(w) + 2πk, where k ∈ Z; and y is
multiple-valued. When w 6= 0, we write z = log(w) to indicate that z can be any one of the
infinitely many complex numbers such that ez = w and we write z = Log(w) to indicate the
choice that z = ln |w|+ iArg(w).

nth Roots The principle value of the nth root is given by

PVz1/n = exp

(
Log(z)

n

)
= |z|1/neiArg(z)/n.

The function PVz1/n is differentiable in C \ (−∞, 0].

10 Inverses of Exponential and Related Functions

10.1 The Exponential Function

Inverse of The Exponential Function The principle branch of the complex logarithm
is the function Log from C \ {0} to C, given by

Log(z) = ln |z|+ iArg(z),

where Arg(z) takes values in the range (−π, π].

Differentiability For any branch logθ of the complex logarithm,

log′θ(w) =
1

w

for all w ∈ C \Rθ.

10.2 Complex Powers

Definition Given z ∈ C \ {0} and α ∈ C, we define

zα = exp(α log(z)).

The principle branch of zα is found by using Log, the principle branch of the logarithm.
That is, PVzα = exp(αLog(z)).

Differentiability of Complex Powers The function z 7→ PVzα is differentiable in C \
(−∞, 0], with derivative αPVzα/z.
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10.3 Inverse Hyperbolic Trigonometric Functions

Inverse Hyperbolic Sine The principal branch of the inverse hyperbolic sine function is
given by

PV sinh−1w = Log(w + PV(w2 + 1)1/2).

Differentiability of Inverse Hyperbolic Cosine The principle branch of the inverse
hyperbolic sine function is differentiable in C \ ([i,+i∞) ∪ (−i∞,−i]). Further,

(PV sinh−1)′(w) =
1

PV
√
w2 + 1

.

Inverse Hyperbolic Cosine Similarly, we define

PV cosh−1(w) = Log(w + PV(w + 1)1/2PV(w − 1)1/2).

11 Contour Integrals

Curves Suppose that γ : [a, b]→ C is a curve and

γ(t) = γ1(t) + iγ2(t),

where γ1, γ2 : [a, b]→ R. Then we define

γ′(t) = γ′1(t) + iγ′2(t),

when both γ′1(t) and γ′2(t) exist. That is,

Re(γ′(t)) = (Re(γ))′ and Im(γ′) = (Im(γ))′.

Contour A contour is an oriented range of a piecewise smooth curve in the complex plane.

Integral of a Complex-Valued Function Suppose that u, v : [a, b]→ R are real-valued
functions, and that f : [a, b]→ C is given by f = u+ iv. We define

ˆ b

a

f(t)dt =

ˆ b

a

(u(t) = iv(t))dt =

ˆ b

a

u(t)dt+ i

ˆ b

a

v(t)dt,

provided that the two real integrals on the right hand side exist.
That is,

Re

(ˆ b

a

f(t)dt

)
=

ˆ b

a

Re(f(t))dt and Im

(ˆ b

a

f(t)dt

)
=

ˆ b

a

Im(f(t))dt.
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Properties of Integration For a, b, c, d ∈ R, λ, µ ∈ C, a real-valued differentiable function
h : [c, d]→ [a, b] such that h(c) = a and h(d) = b, and complex-valued functions f and g.

ˆ b

a

λf(t) + µg(t)dt = λ

ˆ b

a

f(t)dt+ µ

ˆ b

a

g(t)dt

ˆ d

c

f(h(t))h′(t)dt =

ˆ b

a

f(s)ds

ˆ b

a

f ′(t)g(t)dt = [f(b)g(b)− f(a)g(a)]−
ˆ b

a

f(t)g′(t)dt

ˆ b

a

eλtdt =

[
eλt

λ

]t=b
t=a

=
eλb − eλa

λ

|
ˆ b

a

f(t)dt| ≤
ˆ b

a

|f(t)|dt.

Complex Line Integrals Given a (not necessarily simple) piecewise smooth curve γ :
[a, b] → C and a continuous (not necessarily differentiable) function f defined on the range
of γ, we define the complex line integral

´
γ
f(z)dz by

ˆ
γ

f(z)dz =

ˆ b

a

f(γ(t))γ′(t)dt,

provide that the integral on the right hand side exists.

Properties of Complex Line Integrals Suppose that λ, µ ∈ C, that λ : [a, b]→ C is a
piecewise smooth curve, and that f and g are complex functions defined on Range(λ). Then
the following hold.

(a) The integral is linear:ˆ
γ

λf(z) + µg(z)dz = λ

ˆ
γ

f(z)dz + µ

ˆ
γ

g(z)dz.

(b) The integral is independent of parametrisation: if δ is a reparametrisation of γ that is
also a piecewise smooth curve, thenˆ

λ

f(z)dz =

ˆ
δ

f(z)dz.

(c) The integral is additive for joins: if γ = α t β, thenˆ
γ

f(z)dz =

ˆ
α

f(z)dz +

ˆ
β

f(z)dz.

(d) The integral depends on the orientation:ˆ
γ∗
f(z)dz = −

ˆ
γ

f(z)dz.

17



(e) We may estimate the size of the integral:

|
ˆ
γ

f(z)dz| ≤ML,

where L is the length of γ and M is a number such that |f(z)| ≤M for all z ∈ Range(γ).

Contour Integrals We define ˆ
Γ

f(z)dz =

ˆ
γ

f(z)dz,

where γ is any parametrisation of Γ.

12 The Cauchy-Goursat Theorem

12.1 Simply Connected Domains

The Cauchy-Goursat Theorem Suppose that Ω is a simply connected domain, that
f ∈ H(Ω), and that Γ is a closed contour in Ω. Thenˆ

Γ

f(z)dz = 0.

Independence of Contour Suppose that Ω is a simply connected domain in C, that
f ∈ H(Ω), and that Γ and ∆ are contours with the same initial point p and the same final
point q. Then ˆ

Γ

f(z)dz =

ˆ
∆

f(z)dz.

Existence of Primitives Suppose that Ω is a simply connected domain in C, and that
f ∈ H(Ω). Then there exists a function F on Ω such thatˆ

Γ

f(z)dz = F (q)− F (p)

for all simple contours Γ in Ω from p to q. Further, F is differentiable, and F ′ = f . Finally,
if F1 is any other function such that F ′1 = f , then F1 − F is a constant andˆ

Γ

f(z)dz = F1(q)− F1(p),

where p and q are the initial and final points of Γ.

12.2 Multiply Connected Domains

Cauchy-Goursat Suppose that Ω is a bounded domain whose boundary ∂Ω consists of
finitely many contours, Γ0,Γ1, . . . ,Γn. Suppose also that f ∈ H(Υ), where Ω̄ ⊂ Υ. Then

ˆ
∂

Ωf(z)dz =
n∑
i=0

ˆ
Γj

f(z)dz = 0.
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Corollary Suppose that Υ is a simply connected domain, that Γ is a simple closed contour
in Υ, and that f is a differentiable function in Υ. Thenˆ

Γ

f(z)dz = 0.

Existence of Primitives Suppose that Ω is a bounded domain whose boundary ∂Ω con-
sists of finitely many contours Γ0,Γ1, . . . ,Γn, that Ω̄ ⊂ Υ, and that f is a differentiable
function in Υ. If

´
Γj
f(z)dz = 0 when j = 1, . . . , n, then

´
Γ
f(z)dz = 0 for any closed

contour in Ω, and further, there is a differentiable function F in Ω such that F ′ = f andˆ
∆

f(z)dz = F (q)− F (p)

for all simple contours ∆ in Ω from p to q.

13 Cauchy’s Integral Formula

Cauchy’s Integral Formula Suppose that Ω is a simply connected domain in C, that
f ∈ H(Ω), that Γ is a simple closed contour in Ω and that w ∈ Int(Γ). Then

f(w) =
1

2πi

ˆ
Γ

f(z)

z − w
dz.

Independence of Contour Suppose that w lies in a simply connected domain Ω, and
that f ∈ H(Ω). If Gamma and ∆ are simple closed contours such that w ∈ Int(Γ) and
w ∈ Int(∆), then ˆ

Γ

f(z)

z − w
dz =

ˆ
∆

f(z)

z − w
dz.

Mean Value Formula Suppose that Ω is a simply connected domain in C, that f ∈ H(Ω),
and that w ∈ Ω. If B̄(w, r) ⊂ Ω, then

f(w) =
1

2π

ˆ 2π

0

f(w + reiθ)dθ.

Cauchy’s Generalised Integral Formula Suppose that f ∈ H(B(z0, R)), and that Γ is
a simple closed contour in B(z0, R) such that z0 ∈ Int(Γ). Then

f(w) =
∞∑
n=0

cn(w − z0)n ∀w ∈ B(z0, R),

where

cn =
1

2πi

ˆ
Γ

f(z)

(z − z0)n+1
dz.

The radius of convergence of the power series is at least R.
This combined with the fact that f (n)(z0) = n!cn, implies that

f (n)(z0) =
n!

2πi

ˆ
Γ

f(z)

(z − z0)n+1
dz.
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Liouville’s Theorem Suppose that f is a bounded entire function. Then f is constant.

The Fundamental Theorem of Algebra Suppose that f is a nonconstant complex
polynomial. Then f has at least one root, and hence f may be factorised as a product of a
constant and finitely many linear factors.

Holomorphic Function Near a Zero Suppose that f(z) =
∑∞

n=0 an(z − w)n for all
z ∈ B(w, r), and that an 6= 0 for some n ∈ N. Let N = min{n ∈ N : an 6= 0}. Then

lim
z→w

f(z)

aN(z − w)N
= 1.

Zeros of a Holomorphic Funciton are Isolated Suppose that Ω is an open set, that
f ∈ H(Ω), and that f(w) = 0 for some w ∈ Ω. Then there exists r ∈ R+ such that either
f(z) = 0 for all z ∈ B(w, r) or f(z) 6= 0 for all z ∈ B◦(w, r).

14 Morera’s Theorem and Analytic Continuation

14.1 Morera’s Theorem

Morera’s Theorem Suppose that Ω is a domain, that hte function f : Ω→ C is contin-
uous, and that ˆ

A

f(z)dz =

ˆ
B

f(z)dz,

whenever the simple contours A and B have the same initial point and the same final point.
Then f is holomorphic in Ω.

Holomorphic Extension Suppose that Λ is a (possibly infinite) line segment in an open
set Ω and Ω \ Λ is open. If function f : Ω → C is continuous in Ω and is holomorphic in
Ω \ Λ, then f is holomorphic in Ω.

14.2 Analytic Continuation

f is 0 for Ball in Ball Suppose that B(z1, r1) ⊂ B(w, r), that f ∈ H(B(w,R)), and that
f(z) = 0 for all z ∈ B(z1, r1). Then f(z) = 0 for all z ∈ B(w,R).

Theorem Suppose that Υ is a nonempty open subset of a domain Ω in C, and that
f ∈ H(Ω). If f(z) = 0 for all z in Υ, then f(z) = 0 for all z in Ω.

Corollary Suppose that Υ is a nonempty open subset of a domain Ω in C, and that
f, g ∈ H(Ω). If f(z) = g(z) for all z in Υ, then f(z) = g(z) for all z in Ω.
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