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1 Probability

1.1 Experiment, Sample Space, Event

Experiment An experiment is any process leading to recorded observations.

Outcome An outcome is a possible result of an experiment.

Sample Space The set Ω of all possible outcomes is the sample space of an experiment.
Ω is discrete if it contains a countable (finite or countably infinite) number of outcomes.

Events An event is a set of outcomes, i.e. a subset of Ω. An event occurs if the result of
the experiment is one of the outcomes in that event.

Mutual Exclusion Events are mutually exclusive (disjoint) if they have no outcomes in
common.

Set Operations If you have trouble remembering the above rules, then one can essentially
replace ∪ by multiplication and ∩ by addition.
(The associative law) If A,B,C are sets then

(A ∪B) ∪ C = A ∪ (B ∪ C)

(A ∩B) ∩ C = A ∩ (B ∩ C)

(Distributive Law) If A,B,C are sets then

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

1.2 Sigma-algebra

The σ−algebra must be defined for rigorously working with probability. The σ−algebra can
be thought of as the family of all possible events in a sample space. Analogously, this may
be conceptualised as the power set of the sample space.

Probability A probability is a set function, which is usually denoted by P, that maps
events from the σ−algebra to [0, 1] and satisfies certain properties.

Probability Space The triplet (Ω,A,P) is the probability/sample space where

• Ω is the sample space,

• A is the σ-algebra,

• P is the probability function.
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Properties of Probability Given the probability/sample space (Ω,A,P), the probability
function P must satisfy

• For every set A ∈ A, P(A) ≥ 0

• P(Ω) = 1

• (Countably additive) Suppose the family of sets (Ai)i∈N are mutually exclusive, then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai)

Probability Lemmas

• Given a family of disjoint sets (Ai)i=1,...,k

P

(
k⋃
i=1

Ai

)
=

k∑
i=1

P(Ai)

• P(φ) = 0

• For any A ∈ A,P(A) ≤ 1 and P(Ac) = 1− P(A)

• Suppose B,A ∈ A and A ⊆ B, then P(A) ≤ P(B).

Continuity from Below Given an increasing sequence of events A1 ⊂ A2 ⊂ . . . then,

P

(
∞⋃
n=1

An

)
= lim

n→∞
P(An)

Continuity from Above Given a decreasing sequence of events A1 ⊃ A2 ⊃ . . . then,

P

(
∞⋂
n=1

An

)
= lim

n→∞
P(An)

1.3 Conditional Probability and Independence

Conditional Probability The conditional probability that an event A occurs given that
an event B has occurred is

P(A|B) =
P(A ∩B)

P(B)
, P(B) > 0

Independence Events A and B are independent if P(A ∩B) = P(A)P(B).
Lemma - Given two events A and B then P(A|B) = P(A) if and only if P(B|A) = P(B).
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Independence of Sequences

• A countable sequence of event (Ai)i=N is pairwise independent if P(Ai ∩Aj) = P(Ai)P(Aj)
for all i 6= j.

• A countable sequence of events (Ai)i=N are independent if for any sub-collectionAi1 , . . . , Ain
we have

P(Ai1 ∩ Ai2 · · · ∩ Ain) =
n∏
j=1

P(Aij)

Independence implies pairwise independence, but pairwise independence does not imply
independence.

Multiplicative Law Given events A and B then

P(A ∩B) = P(A|B)P(B),

and similarly, if you have events A,B,C then

P(A1 ∩ A2 ∩ A3) = P(A3|A2 ∩ A1)P(A2|A1)P(A1)

Additive Law Let A and B be events then

P(A ∪B) = P(A) + P(B)− P(A ∩B)

Law of Total Probability Suppose (Ai)i=1,...,k are mutually exclusive and exhaustive of

Ω, that is
⋃k
i=1Ai = Ω, then for any event B, we have

P(B) =
k∑
i=1

P(B|Ai)P(Ai)

Bayes Formula Given sets B,A and a family of disjoint and exhaustive sets (Ai)i=1,...,k

then

P(A|B) =
P(B|A)P(A)∑k
i=1 P(B|Ai)P(Ai)

1.4 Descriptive Statistics

Categorical Data can be sorted into a finite set of (unordered) categories. e.g. Gender

Quantitative Responses are measured on some sort of scale. e.g. Weight.
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Numerical Summaries of the Quantitative Data Given observations x = (x1, . . . , xn).
The sample mean (estimated mean) or average is given by

x̄ =
1

n

n∑
i=1

xi

Sample variance (estimated variance)

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2

2 Random Variables

2.1 Random Variables

Random Variables A random variable (r.v) X is a function from Ω to R such that
∀x ∈ R, the set Ax = {ω ∈ Ω, X(ω) ≤ x} belongs to the σ-algebra A.

Cumulative Distribution Function The cumulative distribution function of a r.v X is
defined by

FX(x) := P({ω : X(ω) ≤ x}) = P(X ≤ x)

Cumulative Distribution Theorems Suppose FX is a cumulative distribution function
of X, then

• it is bounded between zero and one, and

lim
x↓−∞

FX(x) = 0 and lim
x↑∞

FX(x) = 1

• it is non-decreasing, that is if x ≤ y then FX(x) ≤ FX(y)

• for any x < y,

P(x < X ≤ y) = P(X ≤ y)− P(X ≤ x) = FX(y)− FX(x)

• it is right continuous, that is

lim
n↑∞

FX(x+
1

n
) = FX(x)

• it has finite left limit and

P(X < x) = lim
n→∞

FX(x− 1

n
)

which we denote by FX(x−).
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Discrete Random Variables A r.v X is said to be discrete if the image of X consists of
countable many values x, for which P(X = x) > 0.

Discrete Probability Function The probability function of a discrete r.v X is the func-
tion ∇FX(x) = P(X = x) and satisfies∑

all possible x

P(X = x) = 1

Continuous Random Variables A r.v X is said to be continuous if the image of X takes
a continuum of values.

Continuous Probability Density Function The probability density function of a con-
tinuous r.v is a real-valued function fX on R with the property that

P(X ∈ A) =

ˆ
A

fX(y) dy

for any ’Borel’ subset of R.
For a function f : R→ R to be a valid density function, the function f must satisfy the

following properties.

1. for all x ∈ R, f(x) ≥ 0

2.
´∞
−∞ f(x) dx = 1

Useful Properties (for continuous random variable) For any continuous random
variable X with the density fX :

1. By taking A = (−∞, x],P(X ∈ (−∞, x]) = P(X ≤ x)

FX(x) =

ˆ x

−∞
fX(y) dy.

2. For any a < b ∈ R, one can compute P(a < X ≤ b) by

FX(b)− FX(a) =

ˆ b

a

fX(x) dx.

3. From the fundamental theorem of calculus and 1, we have

F ′X(x) =
d

dx

ˆ x

−∞
fX(y) dy = fX(x).
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2.2 Expectation and Variance

Expectation The expectation of a r.v X is denoted by E(X) and it is computed by

1. Let X be a discrete r.v. then

E(X) :=
∑

all possible x

xP(X = x) =
∑

all possible x

x∇FX(x)

2. Let X be a continuous r.v. with density function fX(x) then

E(x) :=

ˆ ∞
−∞

xfX(x) dx

Expectation of Transformed Random Variables Suppose g : R → R, then the ex-
pectation of the transformed r.v g(X) is

E(g(X)) =

{´
R g(x)fX(x) dx continuous∑
x g(x)P(X = x) discrete

usually one is interested in computing E(Xr) for r ∈ N, which is called the r-th moment of
X.

Linearity of Expectation The expectation E is linear, i.e., for any constants a, b ∈ R,

E(aX + b) = aE(X) + b.

Variance Let X be a r.v and we set µ = E(X). The variance is X is denoted by Var(X)
and

Var(X) := E((X − µ)2)

and the standard deviation of X is the square root of the variance.

Properties of Variance Given a random variable X then for any constant a, b ∈ R,

1. Var(X) = E(X2)− (E(X))2

2. Var(aX) = a2 Var(X)

3. Var(X + b) = Var(X)

4. Var(b) = 0

2.3 Moment Generating Functions

Moments A moment of the random variable is denoted by

E[Xr], r = 1, 2, . . .

Moments measure mean, variance, skewness, and kurtosis, all ways of looking at the
shape of the distribution.
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Moment Generating Function The moment generating function (MGF) of a r.v X is
denoted by

MX(u) := E(euX)

and we say that the MGF of X exists if MX(u) is finite in some interval containing zero.
The moment generating function of X exists if there exists h > 0 such that the MX(x)

is finite for x ∈ [−h, h].

Calculating Raw Moments Suppose the moment generating function of a r.v X exists
then

E(Xr) = lim
u→0

M
(r)
X (u) = lim

u→0

dr

du
MX(u)

Equivalence of Moment Generating Functions Let X and Y be two r.vs such that
the moment generating function of X and Y exists and MY (u) = MX(u) for all u in some
interval containing zero then FX(x) = FY (x) for all x ∈ R.

This theorem tells you that if the moment generating function exists then it uniquely
characterises the cumulative distribution function of the random variable.

2.3.1 Useful Inequalities

The Markov Inequality (Chebychev’s First Inequality) For any non-negative r.v X
and a > 0,

P(X ≥ a) ≤ E(X)

a

Chebychev’s Second Inequality Suppose X is any r.v with E(X) = µ,Var(X) = σ2

and k > 0 then

P(|X − µ| > kσ) ≤ 1

k2

Convex (Concave) Functions A function h is convex (concave) if for any λ ∈ [0, 1] and
x1 and x2 in the domain of h, we have

h(λx1 + (1− λ)x2) ≤ (≥)λh(x1) + (1− λ)h(x2)

Jensen’s Inequality Suppose h is a convex (concave) function and X is a r.v then

h(E(X)) ≤ (≥)E(h(X))

By using Jensen’s inequality, one can show

Arithmetic Mean ≥ Geometric Mean ≥ Harmonic Mean.

That is given a sequence of number (ai)i=1,...,n, we have

1

n

n∑
i=1

ai ≥

(
n∏
i=1

ai

) 1
n

≥ n

(
n∑
i=1

a−1
i

)−1
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3 Common Distributions

3.1 Common Discrete Distributions

Bernoulli Trail A Bernoulli trial is an experiment with two possible outcomes. The
outcomes are often labelled ’success’ and ’failure’. A Bernoulli trial defines a random variable
X, given by

X =

{
1 if the trail is a success

0 if the trail is a failure

• Let p ∈ [0, 1] be the probability of success

• We write X ∼ Bernoulli(p)

• The probability function is given by P(X = 1) = p and P(X = 0) = 1− p

• E(X) = p

• Var(X) = E(X2)− E(X)2 = p(1− p)

Binomial Distribution Consider a sequence of n independent Bernoulli trials each with
probability of success p. Let

X := total number of successes

then X is a Binomial r.v with parameter n and p, and we write X ∼ Bin(n, p).
If (Yi)i=1,...,n is a sequence of independent Bernoulli(p) random variable then X :=

∑n
i=1 Yi

is Bin(n, p). The expectation of a Binomial random variable.

E(X) = E

(
n∑
i=1

Yi

)
=

n∑
i=1

E(Yi) = np

Poisson Distribution A r.v X is said to follow the Poisson distribution with parameter
λ, if it’s probability function is given

P(X = k) =
λke−λ

k!
k = 0, 1, . . .

where λ = E(X) = Var(X).

Hypergeometric Distribution A random variable has hypergeometric distribution with
parameter N,m, n and we write X ∼ Hyp(n,m,N) if

P(X = x) =
Cm
x C

n−m
n−x

CN
n

x = 1, . . . , n
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3.2 Continuous Distribution

Normal Random Variable A random variable X is said to be a normal random variable
with parameters µ and σ2 if its probability density function is

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R

and we write X ∼ N (µ, σ2).

Linear Transform Let X be a r.v with probability density function fX , let Y := a+ bX
then for b > 0 and a ∈ R,

fY (x) =
1

b
fX

(
x− a
b

)
Linear Transform of Normally Distributed Random Variable SupposeX ∼ N (µ, σ2)
and a ∈ R and b > 0. The random variable Y := a + bX is also normally distributed with
parameter (a+ bµ, b2σ2), i.e. Y ∼ N (a+ bµ, b2σ2).

Standardisation Suppose X ∼ N (µ, σ2) then

Z :=
X − µ
σ

∼ N (0, 1)

Exponential Distribution A random variable X is said to be exponentially distributed
with parameter λ > 0 if its probability density function is given by

fX(x) =
1

λ
e−

1
λ
x, x > 0

and we write X ∼ exp(λ). Then E(x) = λ and Var(X) = λ2.

Gamma Distribution A random variable X is said to be Gamma distributed with pa-
rameter α, β > 0 if its probability density function is given by

fX(x;α, β) =
e

−x
β xα−1

Γ(α)βα
, x > 0

and we write X ∼ Gamma(α, β) where E(X) = αβ and Var(X) = αβ2.

Beta Distribution The Beta function is given by

B(x, y) =

ˆ 1

0

tx−1(1− t)y−1 dt, x, y > 0

and the Beta and Gamma functions satisfies the following relationship

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, x, y > 0
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A random variable is said to follow a Beta distribution with parameters α, β > 0 if its
density function is given by

fX(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, x ∈ (0, 1)

and we write X ∼ Beta(α, β).

3.2.1 QQ-plot

Quantile Suppose X is a continuous random variable with CDF given by FX . The k%-th
quantile of X is given by

QX(k) := F−1
X (k), k ∈ [0, 1]

where F−1
X is the inverse of the CDF FX .

Quantile Plot Given continuous r.vs X and Y , the theoretical qunatile plot of X against
Y is the graph

(QX(k), QY (k)), k ∈ [0, 1]

Suppose we are given X and Y = aX + b for some a > 0, b ∈ R then the quantile plot of
X against Y is a straight line.

Given r.v.s X and Y and suppose that the quantile plot of X against Y is a straight line.
Then the distribution of X is equal to the distribution of a linear transform of Y .

3.2.2 Indicator Functions

• A indicator function of a set A is defined by

IA(x) =

{
1 x ∈ A
0 x ∈ Ac

• Indicator function of an interval is given as

I[a, b](x) = I{a≤x≤b} or I(a,b](x) = I{a<x≤b}

• The indicator unifies expectation E and probability P notation since, the probability
is the expectation of the indicator function. Therefore, it may be written that

P(X ∈ A) =

ˆ
A

fX(x)dx =

ˆ ∞
−∞

IA(x)fX(x)dx = E(IA(X)).

4 Bivariate Distribution

The joint density function of two continuous random variables X and Y is given by a bivariate
function fX,Y with the properties

12



1. For all x, y ∈ R2, fX,Y (x, y) ≥ 0.

2. The double integral over R2 is equal to one, that is
ˆ ∞
−∞

ˆ ∞
−∞

fX,Y (x, y) dxdy = 1.

3. For any (measurable) set A,B ∈ R
ˆ
B

ˆ
A

fX,Y (x, y) dxdy = P(X ∈ A, Y ∈ B).

Min and Max We write a ∨ b = max(a, b) and a ∧ b = min(a, b).

Tonelli’s Theorem Suppose f : R2 → R+ then
ˆ
R

ˆ
R
f(x, y) dxdy =

ˆ
R

ˆ
R
f(x, y) dydx

Fubini - Tonelli’s Theorem Suppose f : R2 → R, if either
ˆ
R

ˆ
R
|f(x, y) dxdy <∞ or

ˆ
R

ˆ
R
|f(x, y) dydx <∞

then ˆ
R

ˆ
R
f(x, y) dxdy =

ˆ
R

ˆ
Rf(x, y) dydx

Expected Value of Bounded Borel Functions For any (bounded Borel) function g :
R2 → R and random variables X and Y , then (given these integrals/sum are finite)

E(g(X, Y )) =


∑
∀x
∑
∀x g(x, y)P(X = x, Y = y) discrete

´∞
−∞

´∞
−∞ g(x, y)fX,Y (x, y) dxdy, continuous

Marginal Probability/Density Function The marginal densities are given by

fX(x) =

ˆ
R
fX,Y (x, y) dy

fY (y) =

ˆ
R
fX,Y (x, y) dx

and similarly for discrete random variables X and Y .

P(X = x) =
∑
y

P(X = x, Y = y)

P(Y = y) =
∑
x

P(X = x, Y = y)

13



4.1 Independence

Independence Two random discrete variables X and Y are independent if for all outcomes
x and y,

P(X = x, Y = y) = P(X = x)P(Y = y)

or if X are Y are continuous random variable with joint probability density fX,Y then

fX,Y (x, y) = fX(x)fY (y)

for all (x, y) in the domain of fX,Y .

Independence - Generalised X and Y are independent if and only if for all x, y ∈ R2,

P(X ≤ x, Y ≤ y) = FX(x)FY (y)

and in general, for any bounded functions g, f : R→ R

E(g(X)f(Y )) = E(g(X))E(f(Y ))

4.2 Conditional Probability

Conditional Probability Suppose X and Y are

1. discrete random variables, then the conditional probability function of X are given the
set {Y = y} is given by

P(X = x | Y = y) :=
P(X = x, Y = y)

P(Y = y)

2. continuous random variables, then the conditional probability density function of X
given the set Y is given by

fX|Y (x | y) :=
fX,Y (x, y)

fY (y)

Multivariate Gaussian A random vector X = (X1, X2) is said to be Gaussian with
µX = (µX1 , µX2) and Covariance matrix V if

fX(x) =
1√

(2π)d|V |
exp

(
−1

2
(X − µX)TV −1(X − µX)

)
.

Here d = 2 (dimension), V −1 is the matrix inverse of V and |V | i the determinant of V .

Variance Matrix The variance matrix is a symmetric matrix with entries

Vij = Cov(Xi, Xj) where i = 1, . . . , d and j = 1, . . . , d.

If X = (X1, X2) is multivariate Gaussian then Xi for i = 1, 2 must be one-dimensional
Gaussian but the converse is not true.
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Conditional Expectations and Variance Given any bound (Borel) function g, the
conditional expectation of g(X) given the set {Y = y} is

E(g(X) | Y = y) =


∑

x g(x)P(X = x | Y = y) discrete

´∞
−∞ g(x)fX|Y (x | y) dx continuous

The conditional variance of X given the set {Y = y} is

Var(X | Y = y) = E(X2 | Y = y)− (E(X | Y = y))2

Independent Conditional Expectation and Variance Suppose the random variables
X and Y are independent then

1. The conditional expectation of X given Y is simply the expectation of X,

E(X | Y = y) = E(X)

2. The conditional variance of X is simply the variance of X.

Var(X | Y = y) = Var(X)

Bounded Borel Conditional Expectation Given random variablesX and Y a (bounded
Borel) function g : R2 → R

E(g(X, Y )) =

ˆ
R
E(g(X, y) | Y = y)fY (y) dy

where we define

E(g(X, y) | Y = y) :=

ˆ
R
g(x, y)fX|Y (x | y) dx

4.3 Covariance and Correlation

Covariance Given two random variables X and Y , the covariance of X and Y is given by

Cov(X, Y ) = E((X − E(X))(Y − E(Y )))

Properties of Covariance The covariance satisfies the following properties. For random
variables X and Y

1. Cov(X,X) = Var(X),

2. Cov(X, Y ) = E(XY )− E(X)E(Y ),

3. if X and Y are independent then Cov(X, Y ) = 0

4. The covariance is symmetric, i.e. Cov(X, Y ) = Cov(Y,X).

5. The covariance is a bilinear function, i.e. for all a, b ∈ R and random variables X, Y
and Z

Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y, Z)

Cov(X, aY + bZ) = aCov(X, Y ) + bCov(X,Z)
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Correlation The correlation between two random variable X and Y is defined to be

Corr(X, Y ) :=
Cov(X, Y )√

Var(X)Var(Y )

Properties of Correlation Given two random variable X and Y , the following property
holds for the correlation function

1. |Corr(X, Y )| ≤ 1

2. Corr(X, Y ) = −1 iff there exists a ∈ R and b < 0 such that P(Y = a+ bX) = 1

3. Corr(X, Y ) = 1 iff there exists a ∈ R and b < 0 such that P(Y = a+ bX) = 1

4.4 Bivariate Transforms

Montone Probability Density Let X be a random variable with density fX , if h is
monotone over the set {x : fX(x) > 0} then the probability density of Y := h(X) is given
by

fY (y) = fX(x)

∣∣∣∣dxdy
∣∣∣∣ = fX ◦ h−1(y)

∣∣∣∣dh−1(y)

dy

∣∣∣∣
CDF Strictly Increasing Suppose X has density fX and its CDF FX strictly increasing
(once it is greater than zero) then Y := FX(X) ∼ Uniform[0, 1].

Bivariate Transforms Given random variable X and Y , suppose U and V are transforms
of X and Y taking value in R, then

fU,V (u, v) = fX,Y (x, y)| det(J)|

where det(J) is the determinant of the Jacobian (of the inverse)

J =

dxdu dx

dv
dy

du

dy

dv

 .

5 Sum of Variables

Sum of Independent Random Variable If X and Y are independent discrete random
variabels then

P(X + Y = z) =
∑
y

P(X = z − y)P(Y = y)

where the sum is taken over all possible outcomes of Y .
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Sum of Independent Continuous Random Variables (Convolution formula) Suppose
X and Y are independent continuous r.vs with density fX and fY . Let Z = X + Y then

fZ(z) =

ˆ ∞
−∞

fX(z − y)fY (y) dy

Moment Generating Function Approach If X and Y are independent random vari-
ables for which the moment generating function exists then

MX+Y (t) = MX(t)MY (t)

In general if (Xi)i is an independent sequence of random variables, then

M∑n
i=1Xi

(t) =
n∏
i=1

MXi(t)

.

Useful Results Using the method of moment generating function method one can show
the following. Suppose (Xi)i=1,...,n be a =n independent identically distributed (iid) sequence
of random variables and we set Y :=

∑n
i=1Xi then if

• Xi ∼ N (µi, σ
2
i ) then Y ∼ N (

∑n
i=1 µi,

∑n
i=1 σ

2
i

• Xi ∼ exp(λ) or Gamma(1, λ) then Y ∼ Gamma(n, λ)

• Xi ∼ Gamma(αi, β) then Y ∼ Gamma(
∑n

i=1 αi, β)

• Xi ∼ Poisson(λi) then Y ∼ Poisson(
∑n

i=1 λi).

• Xi ∼ Bernoulli(pi) then Y ∼ Binomial(n, p).

• Xi ∼ Binomial(ni, p) then Y ∼ Binomial(
∑n

i=1 ni, p)

6 Central Limit Theorem

6.1 Central Limit Theorem

Central Limit Theorem Let (Xn)n∈N+ be an independent identically distributed se-
quence of random variables with common mean µ = E(X1) and variance σ2 = Var(X1) <∞.
Let Xn = 1

n

∑n
i=1Xi then

Xn − µ
σ/
√
n

d−→ Z ∼ N (0, 1)

17



6.2 Convergences

Convergence in Distribution Let (Xi)i∈N+ be a sequence of random variables, we say
that Xn converges to X in distribution if for all x, for which FX(x) is continuous

lim
n→∞

FXn(x) = FX(x).

In this case, we write Xn
d−→ X.

Convergence of Moment Generating Functions and Existence of CDF Let (Xn)n∈N+

be a sequence of r.v each with moment generating function MXn(t). Suppose that

M(t) = lim
n→∞

MXn(t)

exists then there exists an unique valid cumulative distribution function F and r.v X such
that FX = F .

Convergence of Random Variables A sequence of random variables (Xn)n=1,..., con-
verges in probability to a r.v X if for all ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0

and we write Xn
P−→ X.

Law of Large Numbers Let (Xn)n∈N be a sequence of independent r.vs with mean µ and
finite variance σ2, we set Xn = 1

n

∑n
i=1 Xi, then

Xn
P−→ µ

(Strong Version): Same Thing but using almost surely probability for convergence.

Equal Almost Surely Two random variables X and Y are said to be equal almost surely
if P(Y = X) = 1 and we write X = Y a.s.

Almost Surely Convergence Given a random variable X, a sequence (Xn)n∈N converges
to almost surely to X, if

P(lim
n→0

Xn = X) = 1

and we write X
a.s−→ X.

Convergence in Lp A sequence of random variables (Xi)i∈N+ is said to converge in Lp to
another random variable X if for p ≥ 1,

lim
n→∞

E(|Xn −X|p) = 0

in particular, if p = 2, we say that Xn converges to X in the mean square sense.
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Convergence in Lp and Probability Suppose (Xn)n∈N is a sequence of r.vs converging
to X in Lp for p ≥ 1, then Xn converges to X in probability.

Xn
Lp−→ X =⇒ Xn

P−→ X

Convergence in Probability and Distribution Convergence in probability implies con-
vergence in distribution. That is given X and a sequence (Xn)n∈N+ ,

Xn
a.s.−−→ X =⇒ Xn

P−→ X =⇒ Xn
d−→ X

Convergence Remark We have shown the following implications

Xn
Lp−→ X =⇒ Xn

P−→ X =⇒ Xn
d−→ X

6.3 Applications of the Central Limit Theorem

Normal approximation to Binomial Distribution Suppose X ∼ Binomial(n, p) then

X − np√
np(1− p)

d−→ N (0, 1)

Convergence to Constant in Distribution and Probability Suppose the sequence of
r.vs (Xn)n∈N converges to a constant c in distribution, then (Xn)n∈N converges to a constant
c in probability. That is

Xn
d−→ c =⇒ Xn

P−→ c

Continuous Mapping Lemma Suppose Xn
P−→ X in probability then for any continuous

function, g, g(Xn)
P−→ g(X).

Slutsky’ Theorem Let (Xn)n∈N+ be a sequence of r.vs converging to X in distribution
and (Yi)i∈N+ is another sequence of r.vs that converges in probability to a constnat c, then

1. Xn + Yn
d−→ X + c

2. XnYn
d−→ Xc

6.4 Delta Method

Delta Method Let (Xn−θ)
σ−
√
n

d−→ Z ∼ N (0, 1) and g is differentiable in a neighbourhood of θ

and g′(θ) 6= 0 then
√
n(g(Xn)− g(θ))

d−→ N (0, σ2[g′(θ)]2)
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Extend Delta Method Let (Xn−θ)
σ−
√
n

d−→ Z ∼ N (0, 1) and g is k-times differentiable in a

neighbourhood of θ and g(r)(θ) = 0 for all r < k ∈ N then

n
k
2 (g(Yn)− g(θ))

d←− 1

k!
g(k)(θ)Zk

As a special case, for k = 2, we have that the limiting distribution is X 2.

7 Statistical Inference

7.1 Data and Models

Samples and Data We have a sequence of (random) observations (X1, . . . , Xn) which is
called a set of random samples and (x1, . . . , xn) the sample data. The aim is usually to find
appropriate models to describe this sequence of random observations.

Parametric Models and Space A parametric model for a random sample (X1, . . . , Xn)
is a family of probability/density functions f(x : θ) where θ ∈ Θ, where Θ ⊂ Rd is called the
parameter space.

7.2 Estimators

Estimators Suppose (X1, . . . , Xn) ∼ {fX(x; θ), θ ∈ Θ}. An estimator of θ, denoted by θ̂n
is any real valued function of X1, . . . , Xn, that is

θ̂n = θ̂n(X1, . . . , Xn) = g(X1, . . . , Xn)

where g : Rn → R.

• An estimator of a parameter is a random variable! It is a function of the random
variables (X1, . . . , Xn).

• An estimator also has its own probability distribution and can be computed from the
distribution of (X1, . . . , Xn).

Bias Let θ̂ be an estimator of the parameter θ. The bias of the estimator θ̂s defined to be

Bias(θ̂) = E(θ̂)− θ.

If Bias(θ̂) = 0, then θ̂ is aid to be an unbiased estimator of θ.

Student t-distribution A random variable T is said to have t-distribution with degree of
freedom ν, if its probability density function

fT (x) =
Γ(ν

2
)

Γ(ν/2)Γ(1/2)
ν−1/2

(
1 +

x2

ν

)−(ν+1)/2

, x ∈ (−∞,∞)
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Evaluating Estimators Suppose θ̂ is an estimator of a (vector of) parameter θ. The
standard error or standard deviation of θ̂ is

Se(θ̂) =

√
Var(θ̂)

and the estimated standard error is

Ŝe(θ̂) =

√
Var(θ̂)

∣∣∣∣
θ=θ̂

i.e. it is the standard error with θ̂ instead of θ.

Mean Square Error The Mean Square Error (MSE) of an estimator is

MSE(θ̂) := E((θ̂ − θ)2)

The MSE can be further decomposed into

MSE(θ̂) = Var(θ̂) + [Bias(θ̂)]2

Consistency The estimator θ̂ is a consistent estimator of θ if, n→∞,

θ̂n
P−→ θ

Asymptotic Normal An estimator θ̂n of θ is asymptotically normal if

θ̂n − θ
Se(θ̂)

d−→ Z ∼ N (0, 1)

7.3 Confidence Intervals

LetX1, . . . , Xn be a random sample from a parametric model which has θ ∈ Θ as a parameter.
Let L := L(X1, . . . , Xn) and U := U(X1, . . . , Xn) be such that for all θ ∈ Θ

P(L < θ ≤ U) ≥ 1− α.

The interval (L,U) is called a (1− α)100% confidence interval.
The thing to remember is that the interval (L,U) is random, since L and U are functions

of the random sample X1, . . . , Xn.

Scaling and Independent Gamma Distributions

• If X ∼ Γ(α, β) then cX ∼ Γ(α, cβ).

• If Xi ∼ Γ(αi, β) then
∑n

i Xi ∼ Γ (
∑n

i=1 αi, β).
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8 Parameter, Estimation and Inference

8.1 Maximum Likelihood Estimator

Likelihood Function Suppose x1, . . . , xn be observations from the parametric family
f(x; θ) where θ ∈ Θ ⊂ Rd and x ∈ R. The likelihood function L(θ;x1, . . . , xn) given the
observations is defined by

L(θ;x1, . . . , xn) =
n∏
i=1

f(xi; θ)

and the log likelihood function l(θ;x1, . . . , xn) is given

`(θ;x1, . . . , xn) = ln(L(θ;x1, . . . , xn)) =
n∑
i=1

ln(f(xi; θ))

Maximum Likelihood Estimator The maximum likelihood estimator of θ, is θ̂ which
satisfies

L(θ̂;x1, . . . , xn) ≥ L(θ;x1, . . . , xn), θ ∈ Θ.

8.2 Variance and Standard Error

Fisher Score The Fisher Score is defined to be

Sn(θ) := ∂θ`(θ;X1, . . . , Xn)

where `(θ;x1, . . . , xn) is the log likelihood.

Fisher Information The Fisher information given X1, . . . , Xn is defined to be

In(θ) := −E(∂2
θ`(θ;X1, . . . , Xn))

= −
ˆ
Rn
∂2
θ`(θ;x1, . . . , xn)

n∏
i=1

f(xi; θ) dxi

Properties of Fisher Score and Information The Fisher Score and Fisher informations
satisfies the following properties

• P(Sn(θ)) = 0

• Var(Sn(θ)) = E([∂θL(θ;X1, . . . , Xn)]2) = In(θ).

Likelihood Based Confidence Intervals Suppose θ̂ satisfies the asymptotic normality
property then

θ̂ − θ
Ŝe(θ̂)

d−→ N (0, 1)

and also √
In(θ̂)(θ̂ − θ) d−→ N (0, 1)

where In(θ̂) = In(θ)|θ=θ̂ i.e. the estimated fisher information.
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Asymptotic Normality of Maximum Likelihood Estimators Let (θ̂n−θ)√
Var(θ̂n)

d−→ Z ∼
N (0, 1) and g is a differentiable in a neighbourhood of θ and g′(θ) 6= 0 then

(g(θ̂)− g(θ))√
Var(g(θ̂n))

d−→ N (0, 1)

where we have Var(g(θ̂)) ≈ [g′(θ)]2I−1
n (θ).

Lower Bound on Variance Let θ̃n be any other estimator of θ then

Var(θ̃n) ≥ [∂θE(θ̃n)]2

nI1(θ)

where nI1(θ) = In(θ).

8.3 Multi-parameter Maximal Likelihood Inference

Fisher Information Matrix For multi-parameter models, that is θ ∈ Rk, then the Fisher
information matrix is given by

In(θ) = −E(H) = −

E(H11) . . . E(H1n)
...

. . .
...

E(Hn1) . . . E(Hnn)


where H is the Hessian matrix of I and Hij = ∂2

θiθj
`(θ;x1, . . . , xn).

Maximal Likelihood Inference Let g(θ) be some function of the parameters θ = (θ1, . . . , θk),
the MLE of g(θ) is g(θ̂) where θ̂ is the MLE of θ. Then under some regularity conditions

g(θ̂)− g(θ)

Ŝe(g(θ̂))

d−→ N (0, 1)

where asymptotically,

Ŝe(g(θ̂)) ≈
√
∇g(θ̂)T I−1

n ∇g(θ̂).

Graident Vector The estimated Fisher information matrix In(θ̂) and

∇g(θ̂) =

∂θ1g(θ̂)
...

∂θkg(θ̂)

 .
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9 Hypothesis Testing

9.1 Stating The Hypotheses

Null and Alternative Hypothesis

• Null Hypothesis: Labelled as H0, this is a claim that, a parameter of interest θ,
takes a values θ0. Hence, H0 is of the form θ = θ0 for some pre-specified value of θ0.

• Alternative Hypothesis: Labelled as H1, this is a more general hypothesis about
θ that we accept as true if the evidence contradicting the Null Hypothesis is strong
enough. H1 is usually of the following forms:

– H1 : θ 6= θ0,

– H1 : θ < θ0,

– H1 : θ > θ0.

In a hypothesis test, we use our data to test H0, by measuring how much evidence our data
offer against H0 in favour of H1.

9.2 Rejection Regions

The rejection region is the set of values of the test statistic for which H0 is rejected in favour
of H1.

Intuitive Interpretation Intuitively, under H0, the test statistics T measures the stan-
dardised distance of X̄ (a estimator of µ) away from µ0. Therefore, it measures the distance
between of what we observe and what is assumed.

Intuitively, if this distance is too big, then it is probable that what we assumed (µ = µ0)
is not correct in view of the collected data. i.e. we should reject H0 : µ = µ0.

Numerical Rejection Regions Iin the case of H1 : µ < µ0 or H1 : µ > µ0, the test
statistics is given by Tµ(X) := X̄−µ

σ/
√
n

and the rejection region is given by

R1 =

{
x;
x̄− µ0

σ/
√
n
< c1

}
or R2 =

{
x;
x̄− µ0

σ/
√
n
> c2

}
respectively.

Type I and Type II Error

• Type I error corresponds to rejection of the null hypothesis when it is really true.

• Type II error corresponds to acceptance of the null hypothesis when it is really false.
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Likelihood Ratio Test The LRT (likelihood-ratio test) statistic is given by

T (x) =
supθ∈Θ0

L(θ;x)

supθ∈Θ L(θ;x)

were Θ is the whole parameter space.

9.3 P-values

P-values Given a test statistic, the p-value is the probability of observing a more ’extreme’
or ’unusual’ value of the test statistic than what is already observed under the null hypothesis.

One-Sided Hypothesis Test A one-sided hypothesis test about a parameter θ is either
of the form:

H0 : θ = θ0 versus H1 : θ < θ0

or
H0 : θ = θ0 versus H1 : θ > θ0.

Two-Sided Hypothesis Test A two-sided hypothesis test about θ is of the form

H0 : θ = θ0 versus H1 : θ 6= θ0.

9.4 Power of a Statistical Test

Power Function The power function of a hypothesis test with rejection region R is a
function of θ, defined by

β(θ) := P(X ∈ R; θ)

the notation P(X ∈ R; θ) is just P(X ∈ R), but the computed probability depends on θ.

Power and Type II Error Power and Type II error are inversely related:

P(Type II error) = 1− power(µ).

Test with Power Function For 0 ≤ α ≤ 1, a test with power function β(θ) is a size
(level) α test if supθ∈Θ0

β(θ) = (≤)α.
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