Information, Codes and Ciphers

By Jeremy Le for MATH3411 24T3

1 Introduction

1.1 Mathematical Model

To give a mathematical framework for digital data transmission, define

- a source alphabet $S = \{s_1, s_2, \dots, s_q\}$ of q symbols
- a **code alphabet** A of r symbols probabilities $p_i = P(s_i)$
- a **code** that encodes each symbol s_i by a codeword which is a **string** of code symbols.

1.2 Assumed Knowledge

- Modular Arithmetic and the Division Algorithm
- Probability (Binomial Distribution and Bayes' Rule)
- Linear Algebra (Linear combination, independence, etc...)

1.3 Morse Code

Morse code is a **ternary** code (radix 3). Its alphabet is

- 1. \bullet called **dot**
- 2. called dash
- 3. p a pause

The codewords are strings of • and — **terminated** by p.

1.4 ASCII

American National Standard Code for Information Interchange.

Binary code of fixed codeword length, namely 7, with $2^7 = 128$ encoded symbols.

The extended ASCII is a code like the 7-bit ASCII but with an extra bit in the front used as a check bit, requiring the number of 1's to be even.

1.5 ISBN

International Standard Book Number.

They have 10 bits, with it's last bit being a check bit, requiring

$$\sum_{i=1}^{10} ix_i \equiv 0 \pmod{11}.$$

2 Error Detection and Correction Codes

We say that \mathbf{x} corrupted to \mathbf{y} is denoted by $\mathbf{x} \rightsquigarrow \mathbf{y}$.

2.1 ISBN-10 Error Capability

ISBN-10 numbers are capable of detecting the two types of errors:

- 1. getting a digit wrong,
- 2. interchanging two (unequal) digits.

2.2 Types of Codes

- variable length code: codewords have different lengths
- block code: codewords have the same lengths
- t-error correcting code: code can always correct up to t errors
- systematic code: code with information digits and check digits distinct

2.3 Binary Repetition Codes

A binary r-repetition code encodes $0 \to \overbrace{0 \cdots 0}^r$ and $1 \to \overbrace{1 \cdots 1}^r$

The binary (2t+1)-repetition code is t-error correcting. The binary 2t-repetition code is (t-1)-error correcting and t-error detecting.

2.4 Information Rate and Redundancy

The **information rate** R is given by,

- For a code C of radix r and length $n, R = \frac{\log_r |C|}{n}$
- For a systematic code, $R = \frac{\text{\# information digits}}{\text{length of code}}$

We then define **redundancy** = $\frac{1}{R}$.

2.5 Binary Hamming Error-Correcting Codes

A Binary Hamming (n, k) code is a code of length n with k information bits, such that it is a single error correcting and has a parity check matrix, H, of size n - k by n.

2.6 Hamming Distance, Weights

The **weight** of an n-bit word \mathbf{x} is defined to be

$$w(\mathbf{x}) = \#\{i : 1 \le i \le n, x_i \ne 0\}.$$

Given two n-bit words, the **Hamming distance** between them is

$$d(\mathbf{x}, \mathbf{y}) = \#\{i : 1 \le i \le n, x_i \ne y_i\}.$$

Given some code with set of codewords C, we define (minimum) weight of C to

$$w = w(C) = \min\{w(\mathbf{x}) : \mathbf{x} \in C, \mathbf{x} \neq \mathbf{0}\}.$$

Similarly, the (minimum) distance of C is defined by

$$d = d(C) = \min\{d(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}\}.$$

If $\mathbf{x} \leadsto \mathbf{y}$, then $d(\mathbf{x}, \mathbf{y})$ is the number of errors in \mathbf{y} .

2.7 Decoding Strategies

Minimum Distance Decoding Strategy Given a received word y, decode to *closest* codeword x.

Standard Strategy If received word y is distance at most t from a codeword x, then decode y to x; otherwise flag an error.

Pure Error Detection If received word y is not a codeword x, then flag an error.

2.8 Sphere Packing

The **sphere** of radius r around c:

$$S_r(\mathbf{c}) = \{ \mathbf{x} \in \mathbb{Z}_2^n : d(\mathbf{x}, \mathbf{c}) \le r \}.$$

The volume of this sphere is its size $|S_r(\mathbf{c})|$.

Sphere-Packing Condition Theorem A t-error correcting binary code C of length n has minimum distance d = 2t + 1 or 2t + 2, and

$$|C|\sum_{i=0}^{t} \binom{n}{i} \le 2^n.$$

If we have equality in the bound, then we say that the code is perfect. This means that codewords are evenly spread around in \mathbb{Z}_2^n space.

More generally for radiux r:

$$|C| \le \frac{r^n}{\sum_{i=0}^t \binom{n}{i} (r-1)^i}.$$

2.9 Binary Linear Codes

A linear code C is a vector space over some field \mathbb{F} . Equivalently it is the null-space of

$$C = \{ \mathbf{x} \in \mathbb{F}^n : H\mathbf{x}^T = \mathbf{0} \}$$

of an $m \times n$ parity check matrix H with m = rank(H).

- $\dim C = k = n m$ by the Rank-Nullity Theorem.
- If C is binary, then $|C| = 2^k$.
- C is systematic.
- If *H* is **reduced echelon form**, then we can choose the non-leading columns of *H* to be **information bits** and the leading columns of *H* to be **check bits**.

Minimum Distance for Linear Codes If C is a linear code with parity check matrix H, then

- w(C) = d(C),
- $d(C) = \min\{r : H \text{ has } r \text{ linearly dependent columns}\}.$

For a linear code C, the **row space** (or **row span**) of a $k \times n$ **generator matrix** G over \mathbb{F} generates C, in the sense that C is a set of linear combinations of G.

2.10 Standard Form Matrices

For a linear code C of dimension k and length n = k + m,

- $H = (I_m \mid B)$ is a parity check matrix for C if and only if
- $G = (-B^T \mid I_k)$ is a generator matrix C.

Linear codes C and C' are **equivalent** if C' is obtained by permuting the codeword entries of C by a fixed permutation:

$$C' = CP = \{ \mathbf{x}P : \mathbf{x} \in C \}$$
 for some permutation matrix P

Note that G' = GP and H' = HP.

2.11 Extending Linear Codes

The **extension** of a linear code C:

$$\hat{C} = \{x_0 x_1 \cdots x_n : x_1 \cdots x_n \in C, x_0 = -(x_1 + \cdots + x_n)\}.$$

The **extension** \hat{C} is a linear code with minimum distance d(C) or d(C) + 1.

2.12 Radix r Hamming Codes

- Let r be a prime number and $m \ge 1$ some integer.
- Write the numbers $1, \ldots, r^m 1$ in base r, as length m column vectors.
- Of each set of r-1 parallel columns, delete all whose first nonzero entry is not 1.
- This gives the radix r Hamming code of length $n = \frac{r^m 1}{r 1}$.

3 Compression Coding

Definitions

source S	with	symbols	s_1, \ldots, s_q
	with	probabilities	p_1,\ldots,p_q
$\operatorname{\mathbf{code}} C$	with	codewords	$\mathbf{c}_1,\dots,\mathbf{c}_q$
		of lengths	ℓ_1,\ldots,ℓ_q
		and \mathbf{radix}	r

3.1 Instantaneous and UD Codes

A code C is

- uniquely decodable (UD) if it can always be decoded unambiguously
- **instantaneous** if no codeword is a **prefix** of another. Such a code is an **I-code**.

Decision trees can represent I-codes.

- Branches are numbered from the top down.
- Any radix r is allowed.
- Two codes are equivalent if their decision trees are isomorphic.
- By shuffling source symbols, we may assume that $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$.

The Kraft-Mcmillan Theorem The following are equivalent:

- 1. There is a radix r **UD-code** with codeword lengths $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$
- 2. There is a radix r **I-code** with codeword lengths $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_q$
- 3. $K = \sum_{i=1}^{q} (\frac{1}{r})^{\ell_i} \le i$

3.2 Minimal UD-Codes

The (expected or) average length and variance of codewords in C are

$$L = \sum_{i=1}^{q} p_i \ell_i$$
 $V = (\sum_{i=1}^{q} p_i \ell_i^2) - L^2$

A UD-code is **minimal** with respect to p_1, \ldots, p_q if it has minimal length.

Minimal UD-Codes If a UD-code has minimal average length L with respect to p_1, \ldots, p_q , then, possibly after permuting codewords of equally likely symbols,

- $\ell_1 \leq \ell_2 \cdots \leq \ell_q$
- $\ell_{q-1} = \ell_q$
- If C is instantaneous, then \mathbf{c}_{q-1} and \mathbf{c}_q differ only in their last place.
- \bullet If C is binary, then

$$K = \sum_{i=1}^{q} 2^{-\ell i} = 1$$

3.3 Huffman's Algorithm

Binary Case

- 1. Write the symbols in a column, with highest probability at the top and lowest probability at the bottom.
- 2. Merge the bottom two (least frequent) symbols s_q and s_{q-1} into one big symbol of probability $p_q + p_{q-1}$.
- 3. Write the resulting q-1 symbols in a new column to the right in same order as before. Make sure to place the newly created symbol as high as possible in this column.
- 4. Draw branches from the newly created symbol to its two constituent symbols, and label them 0 and 1.
- 5. Repeat the above, until there is only one symbol left.

Huffman Code Theorem For any given source S and corresponding probabilities, the Huffman Algorithm yields an instantaneous minimum UD-code.

Knuth The average codeword length L of each Huffman code is the sum of all child node probabilities.

3.4 Extensions

For a source $S = \{s_1, \ldots, s_q\}$ with probabilities p_1, \ldots, p_q , the n-th extension of S is the Cartesian product S^n , containing all strings of n symbols in S.

The probability of each symbol in S^n is the product of the probabilities of constituent symbols. We also order the new symbols in non-increasing probability.

3.5 Markov Sources

A k-memory source S is one whose symbols each depend on the previous k.

- If k = 0, then no symbol depends on any other, and S is memoryless.
- If k = 1, then S is a Markov source.
- $p_{ij} = P(s_i \mid s_j)$ is the probability of s_i occurring right after a given s_j .
- The matrix $M = (p_{ij})$ is the **transition matrix**.
- Entry p_{ij} is the probability of getting from state s_j to state s_i .

A Markov process M is in equilibrium \mathbf{p} if $\mathbf{p} = M\mathbf{p}$.

We will assume that

- M is **ergodic**: we can get from any state j to any state i.
- M is aperiodic: the gcd of cycle lengths is 1.

Under the above assumptions, M has a non-zero equilibrium state.

3.6 Arithmetic Coding

Consider a source $\{s_1, \ldots, s_q\}$ where $s_q = \bullet$ is called a stop symbol, with probabilities p_1, \ldots, p_q . In this context, a message will always end with a stop symbol. Encoding a message $s_{i_1} \ldots s_{i_n}$ involves the following steps:

- Split up the interval [0,1) into sub-intervals of size p_1,\ldots,p_q .
- Choose the i_1 -th sub-interval.
- Split up this sub-interval again, in proportion to p_1, \ldots, p_q .
- Choose the i_2 -th sub-interval.
- Repeat this for the rest of the symbols, and output any number inside the final sub-interval found.

3.7 Dictionary Methods

Encoding Consider a message $m = m_1 m_2 \dots m_n$. To encode m:

- Begin with an empty table D, and set the 0-th entry to \emptyset , representing an empty string.
- Find the longest prefix s of m in D (possibly the empty string \emptyset), and say s is in entry k.
- Find the symbol c just after s.
- Add a new entry sc to D, remove sc from m, and output (k, c).
- Repeat until m is fully encoded.

Decoding Consider an encoded message $(k_1, c_1) \dots (k_n, c_n)$. To decode this message, take the following steps:

- Begin with a table D with \emptyset in the 0-th entry.
- Let s_1 be the k_1 -th entry in the table. Append s_1c_1 to the table, and output s_1c_1 .
- Let s_2 be the k_2 -th entry in the table. Append s_2c_2 to the table, and output s_2c_2 .
- Keep doing this until the message is fully decoded.

4 Information Theory

Define $I(s_i) = I(p_i) = -\log_2 p_i$. Define the (Shannon) **entropy** of S:

$$H_r(S) = \sum_{i=1}^{q} p_i I_r(p_i) = -\sum_{i=1}^{q} p_i \log_r p_i$$

This expresses the average information per source symbol.

Gibb's Inequality If p_1, \ldots, p_q and p'_1, \ldots, p'_q are probability distributions, then

$$-\sum_{i=1}^{q} p_{i} \log_{r} p_{r} \le -\sum_{i=1}^{q} p_{i} \log_{r} p'_{i}.$$

Equivalently,

$$\sum_{i=1}^{q} p_i \log_r \frac{p_i'}{p_i} \le 0.$$

Furthermore, there is equality if and only if $p_i = p'_i$ for all i.

Maximum Entropy Theorem For any source S with q symbols, the base r entropy satisfies

$$H_r(S) \le \log_r q$$

with equality if and only if all symbols are equally likely.

First Source-Coding Theorem For each radix r UD-code C for source S,

$$H_r(S) < L_r$$

with equality iff $p_i = r^{-\ell_i}$ for all i and $K_r = \sum_{i=1}^q r^{-\ell_i} = 1$.

4.1 Entropy of Extensions for Memoryless Sources

Entropy of Extensions

$$H_r(S^n) = nH_r(S).$$

Sannon's Source Coding Theorem Encoding S^n by an SF-code or a Huffman code allows the average codeword lengths to be arbitrarily close to the entropy:

$$\frac{L_r^{(n)}}{n} \to H_r(S)$$
 for $n \to \infty$.

4.2 Entropy for Markov Sources

Consider a Markov source $S = \{s_1, \ldots, s_q\}$ with probabilities p_1, \ldots, p_q , transition matrix $M = (p_{ij}) = (P(s_i \mid s_j))$ and equilibrium $\mathbf{p} = (p_i)$.

The **conditional information** of s_i given s_j is

$$I(s_i \mid s_j) = -\log P(s_i \mid s_j) = -\log p_{ij}.$$

The conditional entropy given s_i is

$$H(S \mid s_j) = \sum_{i=1}^{q} p_{ij} I(s_i \mid s_j) = -\sum_{i=1}^{q} P(s_i \mid s_j) \log P(s_i \mid s_j)$$

The Markov entropy of S is

$$H_M(S) = \sum_{j=1}^{q} p_j H(S \mid s_j)$$

$$= -\sum_{i=1}^{q} \sum_{j=1}^{q} p_j p_{ij} \log p_{ij}$$

$$= -\sum_{i=1}^{q} \sum_{j=1}^{q} P(s_j s_i) \log P(s_i \mid s_j).$$

The equilibrium entropy of S is

$$H_E(S) = -\sum_{j=1}^q p_j \log p_j.$$

Theorem on Markov Entropy For a Markov source S,

$$H_M(S) \leq H_E(S)$$
.

There is equality if and only if the symbols in S are independent.

4.3 Noisy Channels

Source entropy: $H(A) = -\sum_{j=1}^{n} P(a_j) \log P(a_j)$

Output entropy: $H(B) = -\sum_{i=1}^{v} P(b_i) \log P(b_i)$

Conditional entropies: $H(B \mid a_j) = -\sum_{i=1}^{v} P(b_i \mid a_j) \log P(b_i \mid a_j)$

 $H(A \mid b_i) = -\sum_{j=1}^{u} P(a_j \mid b_i) \log P(a_j \mid b_i)$

Joint entropy: $H(A,B) = -\sum_{i=1}^{v} \sum_{j=1}^{u} P(a_j \cap b_i) \log P(a_j \cap b_i)$

4.4 Channel Capacity

The channel capacity is

$$C = C(A, B) = \max I(A, B)$$

where the maximum is taken over all possible probabilities for A's symbols.

Theorem The channel capacity of a binary symmetric channel with crossover probability p is 1 - H(p).

5 Number Theory and Algebra

5.1 Revision of Discrete Mathematics

- Division Algorithm
- Inverses
- (Extended) Euclidean Algorithm
- Chinese Remainder Theorem
- Bezout's Identity

5.2 Number Theory Results

Given $m \in \mathbb{Z}^+$, the set of invertible elements in \mathbb{Z}_m is denoted by

$$\mathbb{U}_m = \{ a \in \mathbb{Z}_m : \gcd(a, m) = 1 \}$$

and its elements are the **units** in \mathbb{Z}_m . Euler's **phi-function** is defined by

$$\phi(m) = |\mathbb{U}_m|.$$

Formula for $\phi(m)$

- 1. If gcd(m, n) = 1, then $\phi(mn) = \phi(m)\phi(n)$.
- 2. For a prime p and $\alpha \in \mathbb{Z}^+$, we have $\phi(p^{\alpha}) = p^{\alpha} p^{\alpha-1}$.
- 3. Hence, if $m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ is the prime factorisation of m, then

$$\phi(m) = (p_1^{\alpha_1} - p_1^{\alpha_1 - 1})(p_2^{\alpha_2} - p_2^{\alpha_2 - 1}) \cdots (p_r^{\alpha_r} - p_r^{\alpha_r - 1}).$$

Primitive Element Theorem Given a prime p, there exists $g \in \mathbb{U}_p$ such that

$$\mathbb{U}_p = \{g^0 = 1, g, g^2, \dots, g^{p-2} \text{ and } g^{p-1} = 1.$$

Primitve Powers If g is primitive in \mathbb{Z}_p , then g^k is primitive if and only if $\gcd(k, p-1) = 1$ and hence there are $\phi(p-1)$ primitive elements in \mathbb{Z}_p .

Euler's Theorem If gcd(a, m) = 1, then $a^{\phi(m)} \equiv 1 \pmod{m}$.

Corollary If gcd(a, m) = 1, then $ord_m(a) \mid \phi(m)$.

Fermat's Little Theorem For prime p and any $a \in \mathbb{Z}$, $a^p \equiv a \pmod{p}$

5.3 Finite Fields

Finite Field Theorem If p is prime, m(x) a monic irreducible in $\mathbb{Z}_p[x]$ of degree n, and α denotes a root of m(x) = 0, then

- 1. $\mathbb{F} = \mathbb{Z}_p[x]/\langle m(x) \rangle$ is a field,
- 2. \mathbb{F} is a vector space of dimension n over \mathbb{Z}_p ,
- 3. \mathbb{F} has p^n elements,
- 4. $\{\alpha^{n-1}, \alpha^{n-2}, \dots, \alpha, 1\}$ is a basis for \mathbb{F} ,
- 5. $\mathbb{F} = \mathbb{Z}_p(\alpha)$ i.e. the smallest field containing \mathbb{Z}_p and α ,
- 6. there exists a primitive element γ of order p^n-1 for which $\mathbb{F}=\{0,1,\gamma,\gamma^2,\ldots,\gamma^{p^{n-2}}\},$

if a field \mathbb{F} has a finite number of elements, then $|\mathbb{F}| = p^n$ where p is prime, and \mathbb{F} is isomorphic to $\mathbb{Z}_p[x]/\langle,(x)\rangle$. Hence ALL fields with p^n elements are isomorphic to one another.

5.4 Primality Testing

Pseudo-Prime Test No if we fine n is composite.

- Let $a \in \mathbb{N}$ with a < n.
 - If $gcd(a, n) \neq 1$, then n must be composite so return no
 - Otherwise, if $a^{n-1} \neq 1 \pmod{n}$, then n is composite so return no

Lucas' Test Possible answer as to whether n is prime

- Let $a \in \mathbb{N}$ with a < n.
 - If $gcd(a, n) \neq 1$, then n must be composite so no
 - If $a^{n-1} \neq 1 \pmod{n}$, then n must be composite so no
 - If $a^{(n-1)/p} \neq 1 \pmod{n}$ for all primes $p \mid n-1$, then ves

Miller-Rabin Test If n is composite, then return no

- Write $n = 2^s t + 1$ where t is odd
- Choose some $a \in \{1, ..., n-1\}$ at random
- If $a^t \equiv 1 \pmod{n}$, then it is probably prime
- For r = 0, ..., s 1,
 - If $a^{2^r t} \equiv -1 \pmod{n}$, then n is probably prime.
- Otherwise, it is not prime.

Fermat Factorisation a two-factorisation of n

- For $t = \lceil \sqrt{n} \rceil, \dots, n$:
 - If $s^2 = t^2 n$ is square, then return n = ab = (t-s)(t+s)

6 Algebraic Coding

6.1 Single Error Correcting BCH Codes

Let $f(x) \in \mathbb{Z}_2[x]$ be a polynomial of degree m with a primitive root α . Let $n = 2^m - 1$ and k = n - m.

The matrix $H = \begin{pmatrix} 1 & \alpha & \alpha^2 & \dots & \alpha^{n-1} \end{pmatrix}$ is the check matrix of a binary Hamming (n, k) code C. Every binary Hamming (n, k) code can be obtained in this way.

Let $\mathbf{c} = (c_0, c_1, \dots, c_{n-1}) \in C$ be a codeword.

- c_0, \ldots, c_{m-1} are the check bits
- c_m, \ldots, c_{n-1} are the information bits

The first m bits of the codeword are check bits, since the first m columns of H are the leading columns. Therefore the information bits and the check bits are neatly divided.

The syndrome of the codeword \mathbf{c} is

$$S(\mathbf{c}) = H\mathbf{c}^T = c_0 + c_1\alpha + c_2\alpha^2 + \dots + c_{n-1}\alpha^{n-1} = C(\alpha)$$

where $C(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_{n-1} x^{n-1}$ is the codeword polynomial corresponding to **c**.

- Since **c** is the codeword, its syndrome is 0. Therefore, $S(\mathbf{c}) = 0 = C(\alpha)$, so α is a root of C(x).
- Since α is a root of C(x), the minimal polynomial, $M_1(x)$ of α must divide C(x) without a remainder.
- $M_1(x)$ is the primitive polynomial f(x).

BCH Encoding

1. From our message c_m, \ldots, c_{n-1} , we form the **information** polynomial

$$I(x) = c_m x^m + c_{m+1} x^{m+1} + \dots + c_{n-1} x^{n-1}$$

2. Using polynomial long division, we find the **check polynomial** of degree at most m-1

$$R(x) = I(x)(\mod M_1(x)) = c_0 + c_1 x + \dots + c_{m-1} x^{m-1}.$$

3. Calculate the codeword polynomial

$$C(x) = I(x) + R(x).$$

The codeword is $(c_0, c_1, \ldots, c_{n-1})$ where the first m bits are check bits and the last k bits are information bits.

BCH Error Correcting and Decoding Suppose that we receive $\mathbf{d} = \mathbf{c} + e_j$, where e_j is a unit vector with 1 in the a^j position and zero entries elsewhere.

- 1. Let us represent ${\bf c}$ and ${\bf d}$ as codeword polynomials C(x) and D(x)
- 2. Calculating the syndrome of d gives us

$$S(\mathbf{d}) = D(\alpha) = C(\alpha) + a^j = a^j$$

The error is therefore in the α^j position, which is the $j+1^{th}$ letter of the code. If the syndrome of the codeword we receive is 0, i.e $D(\alpha) = 0$, then there is no error.

3. To decode a codeword, look at the last k bits, which are the information bits (c_m, \ldots, c_{n-1}) .

6.2 Two Error Correcting BCH Codes

Theorem If p is prime and β is a root of $f(x) \in \mathbb{Z}_2[x]$ then so is β^{p^i} for all i.

Construction

- 1. Find a primitive root of minimal polynomial $M_1(x)$, with cyclotomic coset K_1
- 2. Select an index not belonging to $K_1(i \in \{1, ..., p^m 1\} \setminus K_1)$
- 3. Find the minimal polynomial $M_i(x)$ for α^i
- 4. Define $M(x) = M_1(x)M_i(x)$
- 5. Define the check matrix

$$H = \begin{pmatrix} 1 & \alpha & \dots & \alpha^{n-1} \\ 1 & \alpha^i & \dots & (\alpha^i)^{n-1} \end{pmatrix}$$

6. Define the syndrome of a codeword $\mathbf{c} = (c_0, c_1, \dots, c_{n-1})$ as

$$S(\mathbf{c}) = H\mathbf{c}^T = \begin{pmatrix} c_0 + c_1\alpha + \dots + c_{n-1}\alpha^{n-1} \\ c_0 + c_1\alpha^i + \dots + c_{n-1}(\alpha^i)^{n-1} \end{pmatrix} = \begin{pmatrix} C(\alpha) \\ C(\alpha^i) \end{pmatrix}$$

Encoding and Decoding Encoding a double-error correcting BCH code is the same as encoding a single-error correcting BCH code, with the difference being

$$R(x) = I(x) \pmod{M(x)}$$

where M(x) is used instead of $M_1(x)$.

Error Correcting and Decoding Suppose that we received $\mathbf{d} = \mathbf{c} + e_i + e_l$.

- 1. Let us represent ${\bf c}$ and ${\bf d}$ as codeword polynomials C(x) and D(x)
- 2. Calculate the syndrome

$$S(\mathbf{c}) = \begin{pmatrix} D(\alpha) \\ D(\alpha^i) \end{pmatrix} = \begin{pmatrix} C(\alpha) + a^j + a^l \\ C(\alpha^i) + (\alpha^i)^j + (\alpha^i)^l \end{pmatrix} = \begin{pmatrix} \alpha^j + \alpha^l \\ \alpha^{ij} + \alpha^{il} \end{pmatrix} = \begin{pmatrix} C(\alpha) + a^j + a^l \\ C(\alpha^i) + (\alpha^i)^j + (\alpha^i)^l \end{pmatrix}$$

The syndrome allows us to determine when there is 0, 1 or 2 errors.

- 0 errors when $D(\alpha) = D(\alpha^i) = 0$
- 1 error when $D(\alpha) \neq 0$ and $D(\alpha)^i = D(\alpha^i)$
- 2 errors when $D(\alpha) \neq 0$ and $D(\alpha)^i \neq D(\alpha^i)$

7 Cryptography (Ciphers)

7.1 Some Classical Cryptosystems

- Caesar Ciphers
- Simple (monoalphabetic) substitution Cipher
- Transposition Cipher
- Combined Systems
- Polyalphabetic Substitution Ciphers
- Non-Periodic Polyalphabetic Substitutions

Kasiski's Method For a message m of length n, the index of coincidence is given by

$$I_c = \frac{\sum (f_i^2) - n}{n^2 - n}$$

where f_i is the frequency of each letter in the message. Solving for r we get

$$r \approx \frac{0.0273n}{(n-1)I_c - 0.0385n + 0.0658}$$

7.2 Unicity Distance

The unicity distance is

$$n_0 = \lceil \frac{H_2(K)}{\log_2 q - R} \rceil$$

where K is the total number of keys, q is the number of letters in the source alphabet, and R is the rate of the language in bits per character.

For English text, q = 26 and $R \approx 1.5$. So

$$n_0 = \lceil \frac{H_2(K)}{\log_2 q - R} \rceil \approx \lceil \frac{H_2(K)}{4.7 - 1.5} \rceil = \lceil \frac{H_2(K)}{3.2} \rceil.$$

If the keys are equally likely, then

$$n_0 \approx \lceil \frac{log_2|K|}{3 \ 2} \rceil$$