
Information, Codes and Ciphers

By Jeremy Le for MATH3411 24T3

1 Introduction

1.1 Mathematical Model

To give a mathematical framework for digital data transmission,
define

• a source alphabet S = {s1, s2, . . . , sq} of q symbols

• a code alphabet A of r symbols probabilities pi = P (si)

• a code that encodes each symbol si by a codeword which is
a string of code symbols.

1.2 Assumed Knowledge

• Modular Arithmetic and the Division Algorithm

• Probability (Binomial Distribution and Bayes’ Rule)

• Linear Algebra (Linear combination, independence, etc. . . )

1.3 Morse Code

Morse code is a ternary code (radix 3). Its alphabet is

1. • called dot

2. — called dash

3. p a pause

The codewords are strings of • and — terminated by p.

1.4 ASCII

American National Standard Code for Information Interchange.

Binary code of fixed codeword length, namely 7, with 27 = 128
encoded symbols.

The extended ASCII is a code like the 7-bit ASCII but with an
extra bit in the front used as a check bit, requiring the number of
1’s to be even.

1.5 ISBN

International Standard Book Number.

They have 10 bits, with it’s last bit being a check bit, requiring

10∑
i=1

ixi ≡ 0 (mod 11).

2 Error Detection and Correction
Codes

We say that x corrupted to y is denoted by x y.

2.1 ISBN-10 Error Capability

ISBN-10 numbers are capable of detecting the two types of errors:

1. getting a digit wrong,

2. interchanging two (unequal) digits.

2.2 Types of Codes

• variable length code: codewords have different lengths

• block code: codewords have the same lengths

• t-error correcting code: code can always correct up to t
errors

• systematic code: code with information digits and
check digits distinct

2.3 Binary Repetition Codes

A binary r-repetition code encodes 0→
r︷ ︸︸ ︷

0 · · · 0 and 1→
r︷ ︸︸ ︷

1 · · · 1.

The binary (2t+ 1)-repetition code is t-error correcting.

The binary 2t-repetition code is (t−1)-error correcting and t-error
detecting.

2.4 Information Rate and Redundancy

The information rate R is given by,

• For a code C of radix r and length n, R =
logr |C|

n

• For a systematic code, R =
# information digits

length of code

We then define redundancy = 1
R .

2.5 Binary Hamming Error-Correcting Codes

A Binary Hamming (n, k) code is a code of length n with k in-
formation bits, such that it is a single error correcting and has a
parity check matrix, H, of size n− k by n.
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2.6 Hamming Distance, Weights

The weight of an n-bit word x is defined to be

w(x) = #{i : 1 ≤ i ≤ n, xi 6= 0}.

Given two n-bit words, the Hamming distance between them
is

d(x,y) = #{i : 1 ≤ i ≤ n, xi 6= yi}.
Given some code with set of codewords C, we define (minimum)
weight of C to

w = w(C) = min{w(x) : x ∈ C,x 6= 0}.

Similarly, the (minimum) distance of C is defined by

d = d(C) = min{d(x,y) : x,y ∈ C,x 6= y}.

If x y, then d(x,y) is the number of errors in y.

2.7 Decoding Strategies

Minimum Distance Decoding Strategy Given a received
word y, decode to closest codeword x.

Standard Strategy If received word y is distance at most t
from a codeword x, then decode y to x; otherwise flag an error.

Pure Error Detection If received word y is not a codeword x,
then flag an error.

2.8 Sphere Packing

The sphere of radius r around c:

Sr(c) = {x ∈ Zn2 : d(x, c) ≤ r}.

The volume of this sphere is its size |Sr(c)|.

Sphere-Packing Condition Theorem A t-error correcting
binary code C of length n has minimum distance d = 2t + 1
or 2t+ 2, and

|C|
t∑
i=0

(
n

i

)
≤ 2n.

If we have equality in the bound, then we say that the code is
perfect. This means that codewords are evenly spread around in
Zn2 space.

More generally for radiux r:

|C| ≤ rn∑t
i=0

(
n
i

)
(r − 1)i

.

2.9 Binary Linear Codes

A linear code C is a vector space over some field F. Equivalently
it is the null-space of

C = {x ∈ Fn : HxT = 0}

of an m× n parity check matrix H with m = rank(H).

• dimC = k = n−m by the Rank-Nullity Theorem.

• If C is binary, then |C| = 2k.

• C is systematic.

• If H is reduced echelon form, then we can choose the
non-leading columns of H to be information bits and the
leading columns of H to be check bits.

Minimum Distance for Linear Codes If C is a linear code
with parity check matrix H, then

• w(C) = d(C),

• d(C) = min{r : H has r linearly dependent columns}.

For a linear code C, the row space (or row span) of a k × n
generator matrix G over F generates C, in the sense that C is
a set of linear combinations of G.

2.10 Standard Form Matrices

For a linear code C of dimension k and length n = k +m,

• H = (Im | B) is a parity check matrix for C if and only if

• G = (−BT | Ik) is a generator matrix C.

Linear codes Cand C ′ are equivalent if C ′ is obtained by per-
muting the codeword entries of C by a fixed permutation:

C ′ = CP = {xP : x ∈ C} for some permutation matrix P

Note that G′ = GP and H ′ = HP .

2.11 Extending Linear Codes

The extension of a linear code C:

Ĉ = {x0x1 · · ·xn : x1 · · ·xn ∈ C, x0 = −(x1 + · · ·+ xn)}.

The extension Ĉ is a linear code with minimum distance d(C)
or d(C) + 1.

2.12 Radix r Hamming Codes

• Let r be a prime number and m ≥ 1 some integer.

• Write the numbers 1, . . . , rm−1 in base r, as length m column
vectors.

• Of each set of r − 1 parallel columns, delete all whose first
nonzero entry is not 1.

• This gives the radix r Hamming code of length n = rm−1
r−1 .
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3 Compression Coding

Definitions

source S with symbols s1, . . . , sq
with probabilities p1, . . . , pq

code C with codewords c1, . . . , cq
of lengths `1, . . . , `q
and radix r

3.1 Instantaneous and UD Codes

A code C is

• uniquely decodable (UD) if it can always be decoded un-
ambiguously

• instantaneous if no codeword is a prefix of another. Such
a code is an I-code.

Decision trees can represent I-codes.

• Branches are numbered from the top down.

• Any radix r is allowed.

• Two codes are equivalent if their decision trees are isomor-
phic.

• By shuffling source symbols, we may assume that `1 ≤ `2 ≤
· · · ≤ `q.

The Kraft-Mcmillan Theorem The following are equivalent:

1. There is a radix r UD-code with codeword lengths `1 ≤ `2 ≤
· · · ≤ `q

2. There is a radix r I-code with codeword lengths `1 ≤ `2 ≤
· · · ≤ `q

3. K =
∑q
i=1( 1

r )`i ≤ i

3.2 Minimal UD-Codes

The (expected or) average length and variance of codewords
in C are

L =

q∑
i=1

pi`i V = (

q∑
i=1

pi`
2
i )− L2

A UD-code is minimal with respect to p1, . . . , pq if it has minimal
length.

Minimal UD-Codes If a UD-code has minimal average length
L with respect to p1, . . . , pq, then, possibly after permuting code-
words of equally likely symbols,

• `1 ≤ `2 · · · ≤ `q

• `q−1 = `q

• If C is instantaneous, then cq−1 and cq differ only in their
last place.

• If C is binary, then

K =

q∑
i=1

2−`i = 1

3.3 Huffman’s Algorithm

Binary Case

1. Write the symbols in a column, with highest probability at
the top and lowest probability at the bottom.

2. Merge the bottom two (least frequent) symbols sq and sq−1
into one big symbol of probability pq + pq−1.

3. Write the resulting q − 1 symbols in a new column to the
right in same order as before. Make sure to place the newly
created symbol as high as possible in this column.

4. Draw branches from the newly created symbol to its two con-
stituent symbols, and label them 0 and 1.

5. Repeat the above, until there is only one symbol left.

Huffman Code Theorem For any given source S and corre-
sponding probabilities, the Huffman Algorithm yields an instan-
taneous minimum UD-code.

Knuth The average codeword length L of each Huffman code
is the sum of all child node probabilities.

3.4 Extensions

For a source S = {s1, . . . , sq} with probabilities p1, . . . , pq, the
n-th extension of S is the Cartesian product Sn, containing all
strings of n symbols in S.

The probability of each symbol in Sn is the product of the prob-
abilities of constituent symbols. We also order the new symbols
in non-increasing probability.

3.5 Markov Sources

A k-memory source S is one whose symbols each depend on the
previous k.

• If k = 0, then no symbol depends on any other, and S is
memoryless.

• If k = 1, then S is a Markov source.

• pij = P (si | sj) is the probability of si occurring right after
a given sj .

• The matrix M = (pij) is the transition matrix.

• Entry pij is the probability of getting from state sj to state
si.

A Markov process M is in equilibrium p if p = Mp.

We will assume that

• M is ergodic: we can get from any state j to any state i.

• M is aperiodic: the gcd of cycle lengths is 1.

Under the above assumptions, M has a non-zero equilibrium state.
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3.6 Arithmetic Coding

Consider a source {s1, . . . , sq} where sq = • is called a stop symbol, with probabilities p1, . . . , pq. In this context, a message will
always end with a stop symbol. Encoding a message si1 . . . sin involves the following steps:

• Split up the interval [0, 1) into sub-intervals of size p1, . . . , pq.

• Choose the i1-th sub-interval.

• Split up this sub-interval again, in proportion to p1, . . . , pq.

• Choose the i2-th sub-interval.

• Repeat this for the rest of the symbols, and output any number inside the final sub-interval found.

3.7 Dictionary Methods

Encoding Consider a message m = m1m2 . . .mn. To encode m:

• Begin with an empty table D, and set the 0-th entry to ∅, representing an empty string.

• Find the longest prefix s of m in D (possibly the empty string ∅), and say s is in entry k.

• Find the symbol c just after s.

• Add a new entry sc to D, remove sc from m, and output (k, c).

• Repeat until m is fully encoded.

Decoding Consider an encoded message (k1, c1) . . . (kn, cn). To decode this message, take the following steps:

• Begin with a table D with ∅ in the 0-th entry.

• Let s1 be the k1-th entry in the table. Append s1c1 to the table, and output s1c1.

• Let s2 be the k2-th entry in the table. Append s2c2 to the table, and output s2c2.

• Keep doing this until the message is fully decoded.
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4 Information Theory

Define I(si) = I(pi) = − log2 pi.
Define the (Shannon) entropy of S:

Hr(S) =

q∑
i=1

piIr(pi) = −
q∑
i=1

pi logr pi

This expresses the average information per source symbol.

Gibb’s Inequality If p1, . . . , pq and p′1, . . . , p
′
q are probability

distributions, then

−
q∑
i=1

pi logr pr ≤ −
q∑
i=1

pi logr p
′
i.

Equivalently,
q∑
i=1

pi logr
p′i
pi
≤ 0.

Furthermore, there is equality if and only if pi = p′i for all i.

Maximum Entropy Theorem For any source S with q sym-
bols, the base r entropy satisfies

Hr(S) ≤ logr q

with equality if and only if all symbols are equally likely.

First Source-Coding Theorem For each radix r UD-code C
for source S,

Hr(S) ≤ Lr

with equality iff pi = r−`i for all i and Kr =

q∑
i=1

r−`i = 1.

4.1 Entropy of Extensions for Memoryless
Sources

Entropy of Extensions

Hr(S
n) = nHr(S).

Sannon’s Source Coding Theorem Encoding Sn by an SF-
code or a Huffman code allows the average codeword lengths to
be arbitrarily close to the entropy:

L
(n)
r

n
→ Hr(S) for n→∞.

4.2 Entropy for Markov Sources

Consider a Markov source S = {s1, . . . , sq} with probabilities
p1, . . . , pq, transition matrix M = (pij) = (P (si | sj)) and equi-
librium p = (pj).
The conditional information of si given sj is

I(si | sj) = − logP (si | sj) = − log pij .

The conditional entropy given sj is

H(S | sj) =

q∑
i=1

pijI(si | sj) = −
q∑
i=1

P (si | sj) logP (si | sj)

The Markov entropy of S is

HM (S) =

q∑
j=1

pjH(S | sj)

= −
q∑
i=1

q∑
j=1

pjpij log pij

= −
q∑
i=1

q∑
j=1

P (sjsi) logP (si | sj).

The equilibrium entropy of S is

HE(S) = −
q∑
j=1

pj log pj .

Theorem on Markov Entropy For a Markov source S,

HM (S) ≤ HE(S).

There is equality if and only if the symbols in S are independent.

4.3 Noisy Channels

Source entropy: H(A) = −
u∑
j=1

P (aj) logP (aj)

Output entropy: H(B) = −
v∑
i=1

P (bi) logP (bi)

Conditional entropies: H(B | aj) = −
v∑
i=1

P (bi | aj) logP (bi | aj)

H(A | bi) = −
u∑
j=1

P (aj | bi) logP (aj | bi)

Joint entropy: H(A,B) = −
v∑
i=1

u∑
j=1

P (aj ∩ bi) logP (aj ∩ bi)

4.4 Channel Capacity

The channel capacity is

C = C(A,B) = max I(A,B)

where the maximum is taken over all possible probabilities for A’s
symbols.

Theorem The channel capacity of a binary symmetric channel
with crossover probability p is 1−H(p).
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5 Number Theory and Algebra

5.1 Revision of Discrete Mathematics

• Division Algorithm

• (Extended) Euclidean Al-
gorithm

• Bezout’s Identity

• Inverses

• Chinese Remainder Theo-
rem

5.2 Number Theory Results

Given m ∈ Z+, the set of invertible elements in Zm is denoted by

Um = {a ∈ Zm : gcd(a,m) = 1}

and its elements are the units in Zm.
Euler’s phi-function is defined by

φ(m) = |Um|.

Formula for φ(m)

1. If gcd(m,n) = 1, then φ(mn) = φ(m)φ(n).

2. For a prime p and α ∈ Z+, we have φ(pα) = pα − pα−1.

3. Hence, if m = pα1
1 pα2

2 · · · pαr
r is the prime factorisation of m,

then

φ(m) = (pα1
1 − p

α1−1
1 )(pα2

2 − p
α2−1
2 ) · · · (pαr

r − pαr−1
r ).

Primitive Element Theorem Given a prime p, there exists
g ∈ Up such that

Up = {g0 = 1, g, g2, . . . , gp−2 and gp−1 = 1.

Primitve Powers If g is primitive in Zp, then gk is primitive if
and only if gcd(k, p−1) = 1 and hence there are φ(p−1) primitive
elements in Zp.

Euler’s Theorem If gcd(a,m) = 1, then aφ(m) ≡ 1 (mod m).

Corollary If gcd(a,m) = 1, then ordm(a) | φ(m).

Fermat’s Little Theorem For prime p and any a ∈ Z, ap ≡ a
(mod p)

5.3 Finite Fields

Finite Field Theorem If p is prime, m(x) a monic irreducible
in Zp[x] of degree n, and α denotes a root of m(x) = 0, then

1. F = Zp[x]/〈m(x)〉 is a field,

2. F is a vector space of dimension n over Zp,

3. F has pn elements,

4. {αn−1, αn−2, . . . , α, 1} is a basis for F,

5. F = Zp(α) i.e. the smallest field containing Zp and α,

6. there exists a primitive element γ of order pn − 1 for which
F = {0, 1, γ, γ2, . . . , γpn−2},

if a field F has a finite number of elements, then |F| = pn where
p is prime, and Fis isomorphic to Zp[x]/〈, (x)〉. Hence ALL fields
with pn elements are isomorphic to one another.

5.4 Primality Testing

Pseudo-Prime Test No if we fine n is composite.

• Let a ∈ N with a < n.

– If gcd(a, n) 6= 1, then n must be composite so return no

– Otherwise, if an−1 6= 1 (mod n), then n is composite so
return no

Lucas’ Test Possible answer as to whether n is prime

• Let a ∈ N with a < n.

– If gcd(a, n) 6= 1, then n must be composite so no

– If an−1 6= 1 (mod n), then n must be composite so no

– If a(n−1)/p 6= 1 (mod n) for all primes p | n − 1, then
yes

Miller-Rabin Test If n is composite, then return no

• Write n = 2st+ 1 where t is odd

• Choose some a ∈ {1, . . . , n− 1} at random

• If at ≡ 1 (mod n), then it is probably prime

• For r = 0, . . . , s− 1,

– If a2
rt ≡ −1 (mod n), then n is probably prime.

• Otherwise, it is not prime.

Fermat Factorisation a two-factorisation of n

• For t = d
√
ne, . . . , n:

– If s2 = t2−n is square, then return n = ab = (t−s)(t+s)
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6 Algebraic Coding

6.1 Single Error Correcting BCH Codes

Let f(x) ∈ Z2[x] be a polynomial of degree m with a primitive
root α. Let n = 2m − 1 and k = n−m.

The matrix H =
(
1 α α2 . . . αn−1

)
is the check matrix of

a binary Hamming (n, k) code C. Every binary Hamming (n, k)
code can be obtained in this way.

Let c = (c0, c1, . . . , cn−1) ∈ C be a codeword.

• c0, . . . , cm−1 are the check bits

• cm, . . . , cn−1 are the information bits

The first m bits of the codeword are check bits, since the first m
columns of H are the leading columns. Therefore the information
bits and the check bits are neatly divided.

The syndrome of the codeword c is

S(c) = HcT = c0 + c1α+ c2α
2 + · · ·+ cn−1α

n−1 = C(α)

where C(x) = c0 + c1x + c2x
2 + · · · + cn−1x

n−1 is the codeword
polynomial corresponding to c.

• Since c is the codeword, its syndrome is 0. Therefore, S(c) =
0 = C(α), so α is a root of C(x).

• Since α is a root of C(x), the minimal polynomial, M1(x) of
α must divide C(x) without a remainder.

• M1(x) is the primitive polynomial f(x).

BCH Encoding

1. From our message cm, . . . , cn−1, we form the information
polynomial

I(x) = cmx
m + cm+1x

m+1 + · · ·+ cn−1x
n−1.

2. Using polynomial long division, we find the check polyno-
mial of degree at most m− 1

R(x) = I(x)( mod M1(x)) = c0 + c1x+ · · ·+ cm−1x
m−1.

3. Calculate the codeword polynomial

C(x) = I(x) +R(x).

The codeword is (c0, c1, . . . , cn−1) where the first m bits are check
bits and the last k bits are information bits.

BCH Error Correcting and Decoding Suppose that we re-
ceive d = c+ej , where ej is a unit vector with 1 in the aj position
and zero entries elsewhere.

1. Let us represent c and d as codeword polynomials C(x) and
D(x)

2. Calculating the syndrome of d gives us

S(d) = D(α) = C(α) + aj = aj

The error is therefore in the αj position, which is the j + 1th

letter of the code. If the syndrome of the codeword we receive
is 0, i.e D(α) = 0, then there is no error.

3. To decode a codeword, look at the last k bits, which are the
information bits (cm, . . . , cn−1).

6.2 Two Error Correcting BCH Codes

Theorem If p is prime and β is a root of f(x) ∈ Z2[x] then so

is βp
i

for all i.

Construction

1. Find a primitive root of minimal polynomial M1(x), with
cyclotomic coset K1

2. Select an index not belonging to K1(i ∈ {1, . . . , pm−1}\K1)

3. Find the minimal polynomial Mi(x) for αi

4. Define M(x) = M1(x)Mi(x)

5. Define the check matrix

H =

(
1 α . . . αn−1

1 αi . . . (αi)n−1

)
6. Define the syndrome of a codeword c = (c0, c1, . . . , cn−1) as

S(c) = HcT =

(
c0 + c1α+ · · ·+ cn−1α

n−1

c0 + c1α
i + · · ·+ cn−1(αi)n−1

)
=

(
C(α)
C(αi)

)
Encoding and Decoding Encoding a double-error correcting
BCH code is the same as encoding a single-error correcting BCH
code, with the difference being

R(x) = I(x)(modM(x))

where M(x) is used instead of M1(x).

Error Correcting and Decoding Suppose that we received
d = c + ej + el.

1. Let us represent c and d as codeword polynomials C(x) and
D(x)

2. Calculate the syndrome

S(c) =

(
D(α)
D(αi)

)
=

(
C(α) + aj + al

C(αi) + (αi)j + (αi)l

)
=

(
αj + αl

αij + αil

)
=

(
S1

Si

)
The syndrome allows us to determine when there is 0, 1 or 2 errors.

• 0 errors when D(α) = D(αi) = 0

• 1 error when D(α) 6= 0 and D(α)i = D(αi)

• 2 errors when D(α) 6= 0 and D(α)i 6= D(αi)
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7 Cryptography (Ciphers)

7.1 Some Classical Cryptosystems

• Caesar Ciphers

• Simple (monoalphabetic) substitution Cipher

• Transposition Cipher

• Combined Systems

• Polyalphabetic Substitution Ciphers

• Non-Periodic Polyalphabetic Substitutions

Kasiski’s Method For a message m of length n, the index of
coincidence is given by

Ic =

∑
(f2i )− n
n2 − n

where fi is the frequency of each letter in the message. Solving
for r we get

r ≈ 0.0273n

(n− 1)Ic − 0.0385n+ 0.0658

7.2 Unicity Distance

The unicity distance is

n0 = d H2(K)

log2 q −R
e

where K is the total number of keys, q is the number of letters
in the source alphabet, and R is the rate of the language in bits
per character.

For English text, q = 26 and R ≈ 1.5. So

n0 = d H2(K)

log2 q −R
e ≈ d H2(K)

4.7− 1.5
e = dH2(K)

3.2
e.

If the keys are equally likely, then

n0 ≈ d
log2|K|

3.2
e
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