Higher Algebra

${\rm Jeremy\ Le-UNSW\ MATH 3711\ 25T1}$

Contents

Ι	Group Theory	3
1	The Mathematical Language of Symmetry	3
2	Matrix Groups and Subgroups	4
3	Permutation Groups	5
4	Generators and Dihedral Groups	7
5	Alternating and Abelian Groups	8
6	Cosets and Lagrange's Theorem	9
7	Normal Subgroups and Quotient Groups	10
8	Group Homomorphisms	11
9	First Group Isomorphism Theorem	13
10	Second and Third Isomorphism Theorems	13
11	Products of Groups	14
12	Symmetries of Regular Polygons	15
13	Abstract Symmetry and Group Actions	16
14	Orbits and Stabilisers	16
15	Structure of G-orbits	17
16	Counting Orbits and Cayley's Theorem	18
II	Ring Theory	20
17	Rings	20
18	Ideals and Quotient Rings	21
19	Ring Homomorphisms	22
20	Polynomial Rings	23
21	Matrix Rings	24
22	Direct Products	25
23	Field of Fractions	26

Introduction to Factorisation Theory	. 27
5 Principal Ideal Domains	. 28
Euclidean Domains	. 29
7 Gauss's Lemma	. 31
II Field Theory	33
Field Extensions	. 33
Finite Fields	. 35
Ruler and Compass Constructions	. 36

Part I

Group Theory

1 The Mathematical Language of Symmetry

Definition 1.1 (Isometry). A function $f : \mathbb{R}^n \to \mathbb{R}^n$ is an isometry if ||f(x) - f(y)|| = ||x - y|| for all $x, y \in \mathbb{R}^n$. i.e. preserves distances.

Definition 1.2 (Symmetry). Let $F \subseteq \mathbb{R}^n$, a symmetry of F is a (surjective) isometry $T : \mathbb{R}^n \to \mathbb{R}^n$ such that T(F) = F.

Properties 1.3. Let S, T be symmetries of $F \subseteq \mathbb{R}^n$. Then $S \cdot T : \mathbb{R}^n \to \mathbb{R}^n$ is also a symmetry of F.

Proof. Given $x, y \in \mathbb{R}^n$.

$$||STx - STy|| = ||Tx - Ty||$$
 (S is an isometry)
= $||x - y||$. (T is an isometry)

Therefore ST is an isometry. Clearly ST is surjective as both S and T are surjective. Also,

$$ST(F) = S(F)$$
 $(T(F) = F)$
= F . $(S(F) = F)$

So ST is a symmetry of F.

Properties 1.4. If $G = \text{set of symmetries of } F \subseteq \mathbb{R}^n$, then G satisfies:

- i) Composition is associative, ST(R) = S(TR) for all $S, T, R \in G$.
- ii) $id_{\mathbb{R}^n} \in G$ $(id_{\mathbb{R}^n}(x) = x$ for all $x \in \mathbb{R}^n$). Also, $id_G T = T$ and $T id_G = T$ for all $T \in G$.
- iii) If $T \in G$, then T is bijective and $T^{-1} \in G$.

Proof. If Tx = Ty, then ||Tx - Ty|| = 0. So ||x - y|| = 0, x = y, therefore T is injective. By definition T is surjective, hence, T is bijective and therefore T^{-1} is surjective.

To prove T^{-1} is an isometry.

$$||T^{-1}x - T^{-1}y|| = ||TT^{-1}x - TT^{-1}y||$$

$$= ||id x - id y||$$

$$= ||x - y||.$$

To prove symmetry, $T^{-1}F = F$:

$$T^{-1}F = T^{-1}(T(F)) = F.$$

Thus $T^{-1} \in G$.

Definition 1.5 (Group). A group is a set G equipped with a "multiplication map" $\mu: G \times G \to G$ such that

- 1) Associativity: (gh)k = g(hk) for all $g, h, j \in G$.
- 2) Existence of identity: There exists $1 \in G$ such that 1g = g and g1 = g for all $g \in G$.
- 3) Existence of inverses: $\forall g \in G$, there exists $h \in G$ such that gh = 1 and hg = 1. Denoted by g^{-1} .

Properties 1.6. Basic facts about groups.

• "Generalised Associativity". When multiplying three or more elements, the bracketing does not matter. E.g. (a(b(cd)))e = (ab)(c(de)).

Proof. Mathematical Induction as for matrix multiplication.

• Cancellation Law. If gh = gk then h = k for all $g, h, k \in G$.

Proof.
$$gh = gk \implies g^{-1}(gh) = g^{-1}(gk) \implies (g^{-1}g)h = (g^{-1}g)k \implies 1h = 1k \implies h = k.$$

2 Matrix Groups and Subgroups

Recall $GL_n(\mathbb{R})$ and $GL_n(\mathbb{C})$ which represent the set of real/complex invertible $n \times n$ matrices.

Proposition 2.1. $GL_n(\mathbb{R})$ and $GL_n(\mathbb{C})$ are groups when endowed with matrix multiplication.

Proof. Product of real invertible matrices is in $GL_n(\mathbb{R})$.

- i) matrix multiplication is associative.
- ii) identity matrix $I_n: I_n m = m$ and $mI_n = m$ for all $m \in \mathrm{GL}_n(\mathbb{R})$
- iii) if $m \in GL_n(\mathbb{R})$ then m^{-1} . $mm^{-1} = I$ and $m^{-1}m = I$.

Proposition 2.2. Let G = group.

1) Identity is unique i.e. suppose 1, e are both identities then 1 = e.

Proof.
$$1 = 1 \cdot e = e$$
.

2) Inverses are unique.

Proof. If
$$g \in G$$
, $gh = hg = 1$ and $gk = kg = 1$ then $h = k$.

3) For $g, h \in G$ we have $(gh)^{-1} = h^{-1}g^{-1}$.

Proof.
$$(gh)(h^{-1}g^{-1}) = ghh^{-1}g^{-1} = g1g^{-1} = gg^{-1} = 1$$
. Similarly, $(h^{-1}g^{-1}(gh) = 1)$.

Definition 2.3 (Subgroup). Let G be a group with multiplication μ . A subset $H \subseteq G$ is called a subgroup of G (denoted $H \subseteq G$) if it satisfies:

- i) $1_G \in H$ (contains identity),
- ii) if $g, h \in H$ then $gh \in H$ (closed under multiplication),
- iii) if $g \in H$ then $g^{-1} \in H$ (closed under inverse).

Proposition 2.4. H is a group with the induced multiplication map $\mu_H: H \times H \to H$ by $\mu_H(g,h) = \mu(g,h)$.

Proof. (ii) tells us that μ_H makes sense. μ_H is associative because μ is. H has an identity from (i). H has inverses from (iii).

Proposition 2.5. Set of orthogonal matrices $O_n(\mathbb{R}) = \{M \in GL_n(\mathbb{R}) : M^T = M^{-1}\} \leq GL_n(\mathbb{R})$ forms a group. Namely the set of symmetries of an n-1 sphere, i.e. an n dimensional circle.

Proof. Check axioms.

- i) $I_n \in O_n(\mathbb{R})$
- ii) If $M, N \in O_n(\mathbb{R})$ then $(MN)^T = N^T M^T = N^{-1} M^{-1} = (MN)^{-1}$, so $MN \in O_n(\mathbb{R})$.
- iii) If $M \in O_n(\mathbb{R})$ then $(M^{-1})^T = (M^T)^{-1} = (M^{-1})^{-1}$ so $M^{-1} \in O_n(\mathbb{R})$.

Proposition 2.6. Basic subgroup facts.

- i) Any group G has two trivial subgroups: itself and $1 = \{1_G\}$.
- ii) If $J \leq H$ and $H \leq G$ then $J \leq G$.

Here are some notations. For $q \in G$ where G is a group.

- i) If n positive integer, define $g^n = g \cdot g \cdots g$ (n times)
- ii) $q^0 = 1$
- iii) *n* positive: $g^{-n} = (g^{-1})^n$ or $(g^n)^{-1}$.
- iv) For $m, n \in \mathbb{Z}$, $g^m \cdot g^n = g^{m+n}$ and $(g^m)^n = g^{mn}$.

Definition 2.7. The order of a group G, denoted |G| is the cardinality of G. For $g \in G$, the order of g is the smallest positive integer n such that $g^n = 1$. If no such integer exists, order is ∞ .

3 Permutation Groups

Definition 3.1 (Permutations). Let S be a set. Let Perm(S) be the set of permutations of S. This is the set of bijections of form $\sigma: S \to S$.

Proposition 3.2. Perm(S) is a group when endowed with composition of functions.

Proof. Composition of bijections is a bijection. The identity is id_S and group inverse is the inverse function.

Definition 3.3 (Symmetric Group). Let $S = \{1, ..., n\}$. The symmetric group S_n is Perm(S).

Two notations are used. With the two line notation, represent $\sigma \in S_n$ by

$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \cdots & \sigma(n) \end{pmatrix}$$

 $(\sigma(i))$'s are all distinct, hence σ is one to one and bijective). Note this shows $|S_n| = n!$.

With the cyclic notation, let $s_1, s_2, \ldots, s_k \in S$ be distinct. We define a new permutation $\sigma \in \text{Perm}(S)$ by $\sigma(s_i) = s_{i+1}$ for $i = 1, 2, \ldots, k-1, \sigma(s_k) = \sigma(s_1)$ and $\sigma(s) = s$ for $s \notin \{s_1, s_2, \ldots, s_k\}$. Denoted $(s_1 s_2 \ldots s_k)$ and called a k-cycle.

Example 3.4. For n = 4,

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \in S_4$$
 means $\sigma(1) = 2, \quad \sigma(2) = 3$ $\sigma(3) = 1, \quad \sigma(4) = 4.$

In cyclic notation this is (123)(4) or (123) where the cycle is $1 \to 2 \to 3 \to 1$.

Note that a 1-cycle is the identity and the order of a k-cycle is k. So $\sigma^k = 1$ and $\sigma^{-1} = \sigma^{k-1}$.

Definition 3.5 (Disjoint Cycles). Cycles $s_1 ldots s_k$ and $t_1 ldots t_k$ are disjoint if $\{s_1, ldots, s_k\} \cup \{t_1, ldots, t_k\} = \emptyset$.

Definition 3.6 (Commutativity). In any group, two elements g, h commute if gh = hg.

Proposition 3.7. Disjoint cycles commute.

Proposition 3.8. Any permutation σ of a finite set S is a product of disjoint cycles.

Example 3.9.
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 5 & 3 \end{pmatrix} \in S_6 \text{ does } 1 \to 2 \to 4 \to 1, 3 \to 6 \to 3 \text{ and } 5 \to 5.$$
 Thus $\sigma = (124)(36)$ since (5) is the identity.

Proposition 3.10. Let σ be a permutation of a finite set S. Then S is a disjoint union of subsets, say S_1, \ldots, S_r , such that σ permutes the elements of each S_i cyclically.

Definition 3.11 (Transposition). A transposition is a 2-cycle i.e. (ab).

Proposition 3.12. i) The k-cycle $(s_1 s_2 ... s_k) = (s_1 s_k)(s_1 s_{k-1}) ... (s_1 s_3)(s_1 s_2)$

Example 3.13.
$$(3625) = (35)(32)(36) = (36)(62)(25)$$

Proof. The RHS produces the mapping below which is equivalent to the LHS.

$$s_1 \rightarrow s_2$$

$$s_2 \rightarrow s_1 \rightarrow s_3$$

$$s_3 \rightarrow s_1 \rightarrow s_4$$

$$\vdots$$

$$s_{k-1} \rightarrow s_1 \rightarrow s_k$$

$$s_k \rightarrow s_1.$$

ii) Any permutations in S_n is a product of transpositions.

Proof. We can write any $\sigma \in S_n$ as product of (disjoint) cycles. By part i), each cycle is a product of transpositions. So we can write σ as product of transpositions.

4 Generators and Dihedral Groups

Lemma 4.1. Let $\{H_i\}_{i\in I}$ be a (non-empty) collection of subgroups of G. Then $\bigcap_{i\in I} H_i \leq G$.

Proof.

- 1) Why is $1 \in \bigcap_{i \in I} H_i$? Because $1 \in H_i$ for all i.
- 2) Closed under multiplication? If $g, h \in \bigcap_{i \in I} H_i$, then $g, h \in H_i$ for all $i \implies gh \in H_i$ for all $i \implies gh \in H_i$.
- 3) Closed under taking inverse? If $g \in \bigcap_{i \in I} H_i$ then $g \in H_i$ for all i as H_i are subgroups, every element has an inverse. So an inverse exists for all elements in H_i for all i.

Proposition - Definition 4.2. Let G be a group and $S \subseteq G$. Let \mathcal{J} be the set of subgroups $J \subseteq G$ containing S.

i) [Definition] The subgroup generated by S, $\langle S \rangle$ is $\bigcap J \in \mathcal{J} \leq J \leq G$. i.e. it's the intersection of all subgroups of G containing S.

Proof. Lemma 4.1 implies $\langle S \rangle$ is a subgroup of G.

ii) [Proposition] $\langle S \rangle$ is the set of elements of the form $g = s_1 s_2 \dots s_n$ where $n \geq 0$ and $s_i \in S \cup S^{-1}$. Define g = 1 when n = 0.

Proof. Let $H = \{s_1 \dots s_n : s_i \in S \cup S^{-1}\}$. First, $H \subseteq \langle S \rangle$. Need to prove that $s_i \dots s_n \in \text{every } J$. Each $s_i \in J$ because $s_i = s$ or s^{-1} for some $s \in S \subseteq J$ and J closed under inversion. Therefore, $s_1 \dots s_n \in J$ by closure under multiplication. Hence $s_1 \dots s_n \in \bigcap_{J \in \mathcal{J}} J = \langle S \rangle$.

Second, $\langle S \rangle \subseteq H$. Need to prove H is a subgroup containing S. Closure under multiplication: $(s_1 \dots s_n)(t_1 \dots t_m) = s_1 \dots s_n t_1 \dots t_m$ also closure under inversion: $(s_1 \dots s_n)^{-1} = s_1^{-1} \dots s_n^{-1} \in H$ since $s_i^{-1} \in S$ for all i. Identity: $s, s^{-1} \in S \neq \emptyset \implies ss^{-1} = 1 \in H$.

Definition 4.3 (Finitely Generated). A group G is finitely generated f.g. if $G = \langle S \rangle$ for a finite subset $S \subseteq G$. G is cyclic if we can take |S| = 1.

Example 4.4. Take $G \in GL_2(\mathbb{R})$ with $\sigma = \begin{pmatrix} \cos(\frac{2\pi}{n}) & -\sin(\frac{2\pi}{n}) \\ \sin(\frac{2\pi}{n}) & -\cos(\frac{2\pi}{n}) \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Find the subgroup generated by $\{\sigma, \tau\}$.

Notice both σ, τ are symmetries of any n-gon. Any element of $\langle \sigma, \tau \rangle$ has form

$$\sigma^{i_1}\tau^{j_1}\sigma^{i_2}\tau^{j_2}\dots\sigma^{i_r}\tau^{j_r}$$
 for $i_1,\dots,i_r,j_1,\dots,j_r\in\mathbb{Z}$.

We have relations: $\sigma^n = 1, \tau^2 = 1$ and $\tau \sigma \tau^{-1} = \sigma^{-1}$. We use these relations to push all σ 's to the left and all τ 's to the right to achieve the form $\sigma^i \tau^j$ where $0 \le i < n$ and j = 0, 1.

Proposition - Definition 4.5. $\langle \sigma, \tau \rangle = \text{dihedral group of } 2n, \text{ denoted } D_n \text{ (sometimes } D_{2n}).$

$$D_n = \{1, \sigma, \dots, \sigma^{n-1}, \tau, \sigma\tau, \sigma^2\tau, \dots, \sigma^{n-1}\tau\}$$
 and $|D_n| = 2n$.

Proof. Need to show 2n elements are all distinct. $\det(\sigma^i) = 1$ (because $\det(\sigma) = 1$), $\det(\tau) = -1$ and $\det(\sigma^i\tau) = -1$. We conclude, $\{1, \sigma, \dots, \sigma^{n-1}\} \cap \{\tau, \sigma\tau, \dots, \sigma^{n-1}\tau\} = \emptyset$ because $\sigma^k = \begin{pmatrix} \cos(\frac{2k\pi}{n}) & -\sin(\frac{2k\pi}{n}) \\ \sin(\frac{2k\pi}{n}) & \cos(\frac{2k\pi}{n}) \end{pmatrix}$ are distinct. If $\sigma^i\tau = \sigma^j\tau$ then $\sigma^i = \sigma^j$ then i = j.

5 Alternating and Abelian Groups

Definition 5.1 (Symmetric Functions). Let $f(x_1, \ldots, x_n)$ be a function of n variables. Let $\sigma \in S_n$. We define function $(\sigma f)(x_1, \ldots, x_n) = f(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$. We say that f is symmetric if $\sigma f = f$ for all $\sigma \in S_n$.

Example 5.2. Suppose $f(x_1, x_2, x_3) = x_1^3 x_2^2 x_3$ and $\sigma = (12)$ then $\sigma f(x_1, x_2, x_3) = x_2^3, x_1^2 x_3$. Not symmetric because $x_1^3 x_2^2 x_3 \neq x_2^3 x_1^2 x_3$. But $f(x_1, x_2) = x_1^2 x_2^2$ is symmetric in two variables.

Definition 5.3 (Difference Product). The difference product in (n variables) is

$$\Delta(x_1, \dots, x_n) = \prod_{i < j} (x_i - x_j).$$

Lemma 5.4. Let $f(x_1, \ldots, x_n)$ be a function in n variables. Let $\sigma, \tau \in S_n$, then $(\sigma \tau) \cdot f = \sigma \cdot (\tau f)$.

Proof.

$$(\sigma \cdot (\tau f))(x_1, \dots, x_n) = (\tau f)(x_{\sigma(1)}, \dots, x_{\sigma(n)})$$
 (by definition)

$$= f(y_{\tau(1)}, \dots, y_{\tau(n)})$$
 (where $y_i = x_{\sigma}(i)$)

$$= f(x_{\sigma(\tau(1))}, \dots, x_{\sigma(\tau(n))})$$

$$= f(x_{(\sigma\tau)(1)}, \dots, x_{(\sigma\tau)(n)})$$

$$= ((\sigma\tau) \cdot f)(x_1, \dots, x_n).$$

Note, the second and third step follows because $x_{\sigma(1)}$ is not necessarily x_1 , so τ is applied to x_1 first, then σ can be applied.

Proposition - Definition 5.5. For $\sigma \in S_n$ write $\sigma = \tau_1 \tau_2 \dots \tau_m$ where τ_i are transpositions. Then

$$\sigma \cdot \Delta = \begin{cases} \Delta & \text{if } m \text{ even (call } \sigma \text{ an even permutation)} \\ -\Delta & \text{if } m \text{ odd (call } \sigma \text{ an odd permutation)} \end{cases}$$

Proof. Sufficent to prove for a single transposition (i.e. m=1) because by the above Lemma,

$$\sigma\Delta = \tau_1(\tau_2 \dots (\tau_{m-1}(\tau_m \Delta)) \dots) = \tau_1((-1)^{m-1}\Delta) = (-1)^m \Delta.$$

Let's assume $\sigma = (ij), i < j$. There are 3 cases:

- i) $x_i x_j \implies x_j x_i$ (factor of -1).
- ii) $x_r x_s$ where i, j, r, s all distinct $\implies x_r x_s$ (factor of +1).

- iii) $x_r x_s$ where one of r, s is equal to i or j. There are several subcases:
 - (a) r < i < j: $x_r x_i \implies x_r x_j$ but also $x_r x_j \implies x_r x_i$, no change (factor of +1).
 - (b) i < r < j: $(x_i x_r)(x_r x_j) \implies (x_j x_r)(x_r x_i)$ (factor of +1).
 - (c) i < j < r: similar to (a) (factor of +1).

So only change in i). Multiplying the three cases together yields $\sigma \cdot \Delta = -\Delta$.

Corollary - Definition 5.6 (Alternating Group). The alternating group (on n symbols) is

$$A_n = \{ \sigma \in S_n : \sigma \text{ is even} \}.$$

This is a subgroup of S_n . Also A_n is generated by $\{\tau_1\tau_2:\tau_1,\tau_2\text{ are transposition}\}.$

Example 5.7.
$$A_3 = \{1, (123), (132)\}, S_3 \setminus A_3 = \{(12), (13), (23)\}, |A_n| = n!/2$$
 except for $n = 1, A_1 = S_1 = \{1\}.$

Definition 5.8 (Abelian Group). A group G is abelian if any two elements commute.

In abelian groups, often switch to additive notation:

- i) product $gh \implies g+h$
- ii) identity $1 \implies 0$
- iii) power $g^n \implies ng$
- iv) inverse $g^-1 \implies -g$

This notation follows from \mathbb{Z} endowed with addition which forms an abelian group.

6 Cosets and Lagrange's Theorem

Let $H \leq G$ be a subgroup. This will apply to all statements in this section unless mentioned otherwise.

Definition 6.1 (Coset). A left coset of H in G is a set of the form $gH = \{gh : h \in H\} \subseteq G$ for some $g \in G$. The set of left cosets is denoted by G/H.

Example 6.2. Let $H = A_n \leq S_n = G$ for $n \geq 2$. Let τ be any transposition. We claim that $\tau A_n = \{\text{odd permutations}\}.$

- \subseteq : $\tau A_n = \{\tau \sigma : \sigma \text{ even}\}$, they are all odd.
- \supseteq : Suppose σ is odd, then $\sigma = \tau \cdot (\tau^{-1}\sigma) \in \tau A_n$.

Theorem 6.3. Define a relation on $G: g \equiv g'$ if and only if $g \in g'H$. Then \equiv is an equivalence relation, the equivalence classes are the left cosets. Therefore $G = \bigcup_{i \in I} g_i H$ (disjoint union).

Proof.

i) Reflexive. i.e. $g \in gH$ for all $g \in G$. True because $1 \in H$.

- ii) Symmetry. Suppose $g \in g'H$, need to prove $g' \in gH$. Since $g \in g'H$ we have g = g'H for some $h \in H$. $g' = gh^{-1}$ so $g' \in gH$ (as $h^{-1} \in H$).
- iii) Transitivity. Suppose $g \in g'H$ and $g' \in g''H$. Then g = g'h and g' = g''h' for $h, h' \in H$. Therefore $g = (g''h)h = g''(h'h) \in g''H$ from associativity and $h'h \in H$.

Thus \equiv is an equivalence relation and G is a disjoint union of equivalence classes.

Note 1H = H is always a coset of G and the coset containing $g \in G$ is gH.

Example 6.4.
$$H = A_n \le S_n = G$$
 cosets are exactly S_n and τS_n where $S_n = A_n \dot{\bigcup} \tau A_n$.

Definition 6.5 (Index). The index of H in G is the number of left cosets, i.e. |G/H|. Denoted by [G:H].

Lemma 6.6. Let $g \in G$. Then H and gH have the same cardinality.

Proof. Bijection, $H \to gH, h \mapsto gh$. Surjective and injective (multiply on left by g^{-1}).

Theorem 6.7 (Lagrange's Theorem). Assume G finite. Then |G| = |H|[G:H] i.e. |G/H| = |G|/|H|.

Proof. Using Lemma 6.6, we have:

$$G = \bigcup_{i=1}^{[G:H]} g_i H \quad \text{(disjoint union)} \implies |G| = \sum_{i=1}^{[G:H]} |g_i H| = \sum_{i=1}^{[G:H]} |H| = [G:H]|H|.$$

Example 6.8.
$$A_n \leq S_n$$
. $[S_n : A_n] = 2 \implies |S_n| = 2|A_n| \implies n! = 2 * n!/2$.

All above statements hold for right cosets which have form $Hg = \{hg : h \in H\}$ denoted $H \setminus G$. The number of left cosets are equal the number of right cosets.

7 Normal Subgroups and Quotient Groups

Let $G = \text{group and } J, K \subseteq G$. Define the subset product $JK = \{jk : j \in J, k \in K\}$.

Proposition 7.1. Let G = group.

- i) If $J' \subseteq J \subseteq G$ and $K \subseteq G$ then $KJ' \subseteq KJ$.
- ii) If $H \leq G$, then $HH = H(= H^2)$.
- iii) For $J,K,L\subseteq G$ then $(JK)L=J(KL)=\{jkl:j\in J,k\in K,\ell\in L\}$

Proposition - Definition 7.2 (Normal Subgroup). Let $N \leq G$. We say N is a normal subgroup of G and write $N \subseteq G$ if any of the following equivalent conditions hold:

- i) gN = Ng for all $g \in G$.
- ii) $g^{-1}Ng = N$ for all $g \in G$.
- iii) $g^{-1}Ng \subseteq N$ for all $g \in G$

Proof. (i) \iff (ii), multiply both sides on the left by g^{-1} . (ii) \implies (iii) by definition. (iii) \implies (ii), assume $g^{-1}Ng\subseteq N$ for all $g\in G$, apply this with $g^{-1}:(g^{-1})Ng^{-1}\subseteq N\implies N\subseteq g^{-1}Ng$. Therefore $g^{-1}Ng=N$.

Theorem - Definition 7.3 (Quotient Group). Let $N \subseteq G$. Then subset product is a well-defined multiplication map on G/N which makes G/N into a group, called the quotient group. Also:

- i) (gN)(g'N) = (gg')N
- ii) $1_{G/N} = N$
- iii) $(qN)^{-1} = q^{-1}N$.

Proof. Why is this well-defined? Why is the product of 2 cosets another coset?

Take cosets $gN = \{g\}N$ and g'N. Calculate

$$(gN)(g'N) = g(Ng')N$$
 (associative)
 $= g(g'N)N$ $(N \le G)$
 $= (gg')(NN)$ (associative)
 $= gg'N$ $(N^2 = N)$

This is a coset. Also proves (i). For (ii), $(gN)N = g(NN) = gN \implies N(gN) = (Ng)N = (gN)N = gN$, N is an identity. For (iii), $(g^{-1}N)(gN) = g^{-1}(Ng)N = g^{-1}(gN)N = (g^{-1}g)(NN) = 1 \cdot N = N$.

8 Group Homomorphisms

Definition 8.1 (Homomorphism). Given groups G, H. A function $\phi : H \to G$ is a homomorphism of groups if $\phi(hh') = \phi(h)\phi(h')$ for all $h, h' \in H$.

Proposition - Definition 8.2 (Isomorphisms and Automorphisms). Let $\phi: H \to G$ be a group homomorphism. The following are equivalent:

- There exists a group homomorphism, $\psi: G \to H$ such that $\psi \phi = \mathrm{id}_H$ and $\phi \psi = \mathrm{id}_G$
- ϕ is bijective.

We call ϕ is a group isomorphism. If H = G, ϕ is an automorphism.

Proposition 8.3. If $\phi: H \to G, \psi: K \to H$ are group homomorphism then $\phi \cdot \psi: K \to G$ is a homomorphism.

Proof.
$$(\phi \cdot \psi)(kk') = \phi(\psi(kk')) = \phi(\psi(k)\psi(k')) = \phi(\psi(k))\phi(\psi(k'))$$

Proposition 8.4. Let $\phi: H \to G$ be a group homomorphism.

- i) $\phi(1_H) = 1_G$.
- ii) $\phi(h^{-1}) = \phi(h)^{-1}$ for all $h \in H$.
- iii) if $H' \leq H$ then $\phi(H') \leq G$.

Proposition - Definition 8.5. Let G be a group with $g \in G$. Conjugation by g is the map $C_g : G \to G$; $h \mapsto ghg^{-1}$. Then C_g is an automorphism with inverse $C_{g^{-1}}$.

Proof. C_g is a homomorphism: $C_g(h_1h_2) = C_g(h_1)C_g(h_2)$. Check: $C_g(h_1h_2) = gh_1h_2g^{-1} = gh_1g^{-1}gh_2g^{-1} = C_g(h_1)C_g(h_2)$. Now check $C_{g^{-1}}$ is an inverse. $C_{g^{-1}}(C_g(h)) = C_{g^{-1}}(ghg^{-1}) = g^{-1}ghg^{-1}g = h$. Similarly $C_g(C_{g^{-1}})(h) = h$, therefore $(C_g)^{-1} = C_{g^{-1}}$.

Corollary - Definition 8.6. For $H \leq G$, a conjugate of H (in G) is a subgroup of G of the form $gHg^{-1} := c_q(H)$.

Definition 8.7 (Epimorphism and Monomorphism). Let $\phi: H \to G$ be a group homomorphism. ϕ is an epimorphism if ϕ is surjective. ϕ is a monomorphism if ϕ is injective.

Example 8.8. Linear map $T: V \to W$ where V and W are vector spaces. Suppose T is a projection onto some subspace. What does $T^{-1}(w) = \{v \in V : T(v) = w\}$ looks like, for a given $w \in W$?

If $w \in L$, $T^{-1}(w) = \emptyset$ If $w \in L$, $T^{-1}(w) = \text{plane containing } w$, orthogonal to L = w + K where $K = \text{kernel of } T = T^{-1}(0)$.

Definition 8.9. Let $\phi: H \to G$ be a group homomorphism. The kernel of ϕ is

$$\ker \phi = \phi^{-1}(1_G) = \{ h \in H : \phi(h) = 1_G \}$$

Proposition 8.10. Let $\phi: H \to G$ be a group homomorphism.

- i) If G' < G then $\phi^{-1}(G') < H$.
- ii) If $G' \subseteq G$ then $\phi^{-1}(G') \subseteq H$.

Proof. (Normality) Given $h \in \phi^{-1}(G')$ and $g \in H$. We need to prove $ghg^{-1} \in \phi^{-1}(G') \implies \phi(ghg^{-1}) \in G \implies \phi(g)\phi(h)\phi(g)^{-1} \in G$ true because $\phi(h) \in G'$ and $G' \leq G$.

iii) $K = \ker \phi \triangleleft H$.

Proof. Follows from (ii) because $K = \phi^{-1}(\{1\})$ and $\{1\} \leq G$.

iv) The non-empty fibres of ϕ , i.e. $\phi^{-1}(g)$ for all $g \in G$, are exactly the cosets of H.

Proof. Suppose $g \in G$, consider $\phi^{-1}(g)$. Assume $\phi^{-1}(g) \neq \phi$. Let $h \in \phi^{-1}(g)$.

Claim. $\phi^{-1}(g) = hK$.

Proof. $hK \subseteq \phi^{-1}(g)$ because $\phi(hK) = \phi(h)\phi(j) = g \cdot 1 = g$.

Converse: $\phi^{-1}(g) \subseteq hK$. Let $h' \in \phi^{-1}(g)$. Then $\phi(h') = g$, also $\phi(h) = g$. Therefore $\phi(h'h^{-1}) = \phi(gg^{-1}) = \phi(1) = 1$. So $h'h^{-1} \in K$, $h' \in Kh = hK$, thus $\phi^{-1}(g) = hK$.

v) ϕ is one to one if and only if $K = \{1\}$.

Proof. (\Longrightarrow) trivial. (\Longleftrightarrow) Assume $K = \{1\}$. By part (iv) fibres $\phi^{-1}(g)$ are cosets of $\{1\}$ hence contain single element.

Proposition - Definition 8.11. Let $N \subseteq G$. The quotient monomorphism (of G by N) is the map $\pi: G \to G/N; g \mapsto gN$. Its an epimorphism with kernel N.

9 First Group Isomorphism Theorem

Theorem 9.1. Let $N \subseteq G$ and $\pi: G \to G/N$ be quotient map. Suppose $\phi: G \to H$ is a homomorphism such that $N \leq \ker \phi$.

- i) If $g, g' \in G$ lie in the same coset of N, i.e. gN = g'N, then $\phi(g) = \phi(g')$.
- ii) The map $\psi: G/N \to H; gN \mapsto \phi(g)$ is a homomorphism (the induced homomorphism).
- iii) ψ is the unique homomorphism $G/N \to H$ such that $\phi = \psi \circ \pi$.
- iv) $\ker \psi = (\ker \phi)/N = \{gN : g \in \ker \phi\}.$

Lemma 9.2 (Universal Property of Quotient Morphism). If $N \subseteq \mathbb{Z}$ then $N = m\mathbb{Z}$ for some $m \in \mathbb{N}$.

Proof. If $N = 0 = \{0\}$ then can take m = 0. Suppose $N \neq 0$. Must contain at least one nonzero element. Take m = smallest positive element in N. $m\mathbb{Z} \subseteq N$ easy. $N \subseteq m\mathbb{Z}$. Let $n \in N$, we write n = mq + r where $0 \leq r < m$. We know $n \in N, mq \in N$. Therefore $r = n - mq \in N$ but $r < m \implies r = 0$. Thus, $n = mq \in m\mathbb{Z}$.

Proposition 9.3. Let $H = \langle h \rangle$ be a cyclic group. Then there exists an isomorphism: $\phi : \mathbb{Z}/m\mathbb{Z} \to H$ where m is the order of hif this is finite and 0 if h has infinite order.

Proof. Define $\phi: \mathbb{Z} \to H; i \mapsto h^i$. ϕ is an epimorphism (because $h^{i+j} = h^i \cdot h^j and H = \langle h \rangle$ gives surjective.) Let $N = \ker \phi$. By lemma, $N = m\mathbb{Z}$ for some $m \geq 0$. Apply Universal Property Theorem, gives $\psi: \mathbb{Z}/m\mathbb{Z} \to H$. ψ surjective because ϕ is surjective. Injective if $i + m\mathbb{Z} \in \ker \psi$, then $\phi(i) = 1 \in H$ so $i \in \ker \phi = N = m\mathbb{Z}$. So $H \cong \mathbb{Z}/m\mathbb{Z}$. Check m gives correct order.

Theorem 9.4 (First isomorphism Theorem). Let $\phi: G \to H$ be a homomorphism. The isomorphism π given by $G \to H$ induces $G/\ker \phi \to H$ (by Universal Property) induces $G/\ker \phi \to \operatorname{Im} \phi$.

10 Second and Third Isomorphism Theorems

Proposition 10.1 (Subgroups of Quotient Groups). Let $N \subseteq G$ and $\pi: G \to G/N$ be the quotient map.

- i) If $N \leq H \leq G$ then $N \leq H$.
- ii) There is a bijection between subgroups $H \leq G$ that contain N and subgroups $\bar{H} \leq G/N$. $H \mapsto \pi(H) = \{nH : h \in H\} = H/N$ and $\bar{H} \leftrightarrow \pi^{-1}(\bar{H})$.

Proof. Images and image images of subgroups are subgroups. If $\bar{H} \leq G/N$, then $\pi^{-1}(\bar{H})$ contains N (because $1_{G/N} \in \bar{H}$). Surjective: $\pi(\pi^{-1}(\bar{H})) = \bar{H}$ because π surjective. Injective: If $\pi(H_1) = \pi(H_2)$ then $H_1 = H_2$. This follows from $H_1 = \bigcup_{g \in H_1} gN$ (disjoint union of cosets).

iii) Normal subgroups correspond i.e. $H \subseteq G$ iff $\bar{H} \subseteq G/N$.

Theorem 10.2 (Second Isomorphism Theorem). Suppose $N \subseteq G$ and $N \subseteq H \subseteq G$. Then $\frac{G/N}{H/N} \cong G/H$.

Proof. Since $\pi_N, \pi_{H/N}$ are both onto, $\phi = \pi_{H/N} \circ \pi_N$ is also onto. $\ker(\phi) = \{g \in G : \pi_N(g) \in \ker(\pi_{H/N} : G/N \to \frac{G/N}{H/N})\} = \{g \in G : \pi_N(g) \in H/N\} = \pi^{-1}(H/N) = H \text{ by Proposition 10.1. First}$

Isomorphism Theorem says $G/\ker(\phi) \cong \operatorname{Im}(\phi) \implies G/N \cong \frac{G/N}{H/N}$ which proves the theorem.

Theorem 10.3. Suppose $H \leq G, N \leq G$. Then

- i) $H \cap N \subseteq H$, $HN \subseteq G$.
- ii) $\frac{H}{H \cap N} \cong \frac{HN}{N}$.

11 Products of Groups

Recall given groups G_1, \ldots, G_n , the set $G_1 \times G_2 \times \ldots G_n = \{(g_1, \ldots, g_n) : g_1 \in G_1, \ldots, g_n \in G_n\}$. More generally if $G_i, i \in I$ are groups then $\prod_{i \in I} G_i = \{(g_i)_{i \in I} : g_i \in G_i\}$.

Proposition - Definition 11.1 (Product). The set $\prod_{i \in I} G_i$ is called the (direct) product of the G_i 's, it is a group when endowed with co-ordinatewise multiplication. $(g_i)(g_i') = (g_i g_i')$

- i) $1_G = (1_{G_i}) = (1_{G_1}, 1_{G_2}, 1_{G_3}, \dots)$
- ii) $(g_i)^{-1} = (g_i^{-1})$

Example 11.2. Consider $\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z}$. (a,b) + (a',b') = (a+a',b+b'), group law in each coordinate. $\mathbb{Z}^2 = \langle (1,0), (0,1) \rangle$ is finitely generated.

Proposition 11.3 (Canonical Injections and Projections). Let $G_i, i \in I$ be groups and $r \in I$.

- i) The canonical injection $\iota_r: G_n \to \prod_{i \in I} G_i; g \mapsto (g_i)_{i \in I}$ where $g_i = 1$ if $i \neq r$ or $g_i = g$ if i = r.
- ii) The canonical project $\pi_r: \prod_{i\in I} G_i \to G_r; (g_i)_{i\in I} \mapsto g_r.$
- iii) $\frac{G_1 \times G_2}{G_1 \times \{1\}} \cong G_2$ (Note: $G_n \times \{1\} \subseteq G_1 \times G_2$).

Proof. $\pi_2: G_1 \times G_2 \to G_2$. Apply First Isomorphism Theorem

Proposition 11.4 (Internal Characterisation of Product). Let $G_1, \ldots, G_n \leq G$. Assume $G = \langle G_1, \ldots, G_n \rangle$. Assume:

- i) If $i \neq j$ then elements of G_i and G_j commute
- ii) For any i, $G_i \cap \langle U_{\ell \neq i} G_{\ell} \rangle = 1$.

Then there is an isomorphism $\phi: G_1 \times \dots G_n \to G; (g_1, \dots, g_n) \mapsto g_1g_2 \cdots g_n$.

Proof. Check homomorphism:

$$\phi((g_1, \dots, g_n)(h_1, \dots, h_n)) = \phi((g_1 h_1, \dots g_n h_n))$$

$$= g_1 h_1 g_2 h_2 \cdots g_n h_n$$

$$= g_1 \cdots g_n h_1 \cdots h_n \qquad \text{(using (i))}$$

$$= \phi(g_1 \dots g_n) \phi(h_1 \dots h_n)$$

Surjective? Yes because G is generated by G_1, \ldots, G_n . Injective? Suppose $\phi((g_1, \ldots, g_n)) = 1$, then

 $g_1 \cdots g_n = 1 \implies g_1^{-1} \in G_1 = g_2 \cdots g_n \in \langle G_2 \cdots G_n \rangle$ by (ii) must be id. So $g_1 = 1$ and $g_2 \cdots g_n = 1$. Repeat the same argument to get all $g_i = 1$.

Corollary 11.5. Let G = finite group of exponent 2. i.e. LCM of all orders of group element is 2. Then $G \cong \mathbb{Z}/2\mathbb{Z} \times \cdots \mathbb{Z}/2\mathbb{Z}$.

Proof. G is finitely genereqated. Choose minimal generating set $\{g_1, \ldots, g_n\}$, each $\langle g_i \rangle \cong \mathbb{Z}/2\mathbb{Z}$. Want to prove that $G \cong \langle g_1 \rangle \times \ldots \langle g_n \rangle$. Condition (i): Need $g_i g_j = g_j g_i$ for $i \neq j$. ord $(g_i g_j) = 2$, so $g_i g_j g_i g_j = 1 \implies g_i g_j = g_j^{-1} g_i^{-1} = g_j g_i$. Condition (ii): e.g. $\langle g_1 \rangle \cap \langle g_2, \ldots, g_n \rangle = \{1\}$. If false, then $g_1 \in \langle g_2, \ldots, g_n \rangle$ but then our generating set is not minimal. By proposition $G \cong \langle g_1 \rangle \times \cdots \times \langle g_n \rangle$.

Theorem 11.6. Let G be a finitely generated abelian group. Then $G \cong \text{product of cyclic groups}$. In fact $G \cong \mathbb{Z}/h_1\mathbb{Z} \times \mathbb{Z}/g_2\mathbb{Z} \times \cdots \times \mathbb{Z}/h_n\mathbb{Z} \times \mathbb{Z}^s$ where $h_1 \mid h_2 \mid h_3 \mid \cdots \mid h_n$ for some $n, r \in \mathbb{N}$.

12 Symmetries of Regular Polygons

 AO_n , the set of surjective symmetries $T: \mathbb{R}^n \to \mathbb{R}^n$ forms a subgroup of $Perm(\mathbb{R}^n)$.

Proposition 12.1. Let $T \in AO_n$, then $T = T_{\mathbf{v}} \circ T'$, where $\mathbf{v} = T(\mathbf{0})$ and T' is an isometry with $T'(\mathbf{0}) = \mathbf{0}$.

Proof. Set $T' = T_{\mathbf{v}}^{-1} \circ T = T_{-\mathbf{v}} \circ T$ where $\mathbf{v} = T(\mathbf{0})$. T' is an isometry because T and $T_{\mathbf{v}}$ are isometries. Also $T'(\mathbf{0}) = T_{-\mathbf{v}}(T(\mathbf{0})) = T_{-\mathbf{v}}(\mathbf{v}) = \mathbf{v} - \mathbf{v} = 0$.

Theorem 12.2. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be an isometry such that $T(\mathbf{0}) = \mathbf{0}$. Then T is linear.

The centre of mass $V = \{\mathbf{v}^1, \dots, \mathbf{v}^m\} \subseteq \mathbb{R}^n$ is $\mathbf{c}_V = \frac{1}{m}(\mathbf{v}^1 + \dots + \mathbf{v}^m)$.

Corollary 12.3. Let $V = \{ \mathbf{v}^1, \dots, \mathbf{v}^m \}$ and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be an isometry such that T(V) = V. Then $T(\mathbf{c}_V) = \mathbf{c}_V$.

Proof. Decomposte $T = T_{\mathbf{w}} \circ T'$ for some $\mathbf{w} \in \mathbb{R}^n$ and isometry T' with $T'(\mathbf{0}) = \mathbf{0}$. So T' is linear. Then

$$T(\mathbf{c}_{V}) = \mathbf{w} + T'(\mathbf{c}_{V}) = \mathbf{w} + T'\left(\frac{1}{m}\sum_{i}\mathbf{v}^{i}\right)$$

$$= \mathbf{w} + \frac{1}{m}\sum_{i}T'(\mathbf{v}^{i}) \qquad \text{(using linearity)}$$

$$= \frac{1}{m}\sum_{i}\left(T'(\mathbf{v}^{i}) + \mathbf{w}\right) = \frac{1}{m}\sum_{i}T(\mathbf{v}^{i})$$

$$= \frac{1}{m}\sum_{i}\mathbf{v}^{i} \qquad \text{(since } T(\mathbf{v}) = \mathbf{v})$$

$$= \mathbf{c}_{V}$$

Corollary 12.4. Let $G \leq AO_n$ be finite. Then there exists $\mathbf{c} \in \mathbb{R}^n$ such that $T\mathbf{c} = \mathbf{c}$ for any $T \in G$. If we translate to change coordinates so $\mathbf{c} = \mathbf{0}$, then $G < O_n$.

Proof. Pick any $\mathbf{w} \in \mathbb{R}^n$ and let $V = \{S\mathbf{w} : S \in G\} \subseteq \mathbb{R}^n$. V is finite because G is finite. Also $T(V) = \{TS\mathbf{w} : S \in G\} = \{S\mathbf{w} : S \in G\} = V$. Take $\mathbf{c} = \mathbf{c}_V$ then by the previous corollary $T(\mathbf{c}) = \mathbf{c}$ for all $T \in G$.

Proposition 12.5 (Symmetries of Regular Polygons). The group of symmetries of a regular n-gon is in fact D_n .

13 Abstract Symmetry and Group Actions

Definition 13.1 (*G*-set, Group Action). A *G*-set is a set *S* equipped with a map $\alpha : G \times S \to S$; $(g, s) \mapsto \alpha(g, s) = g.s$ is called a group action and satisfies the following axioms:

- i) g.(h.s) = (g.h).s for all $g, h \in G, s \in S$.
- ii) $1_G.s = s$ for all $s \in S$.

Definition 13.2 (Permutation Representation). A permutation representation of a group G on a set S is a homomorphism $\phi: G \to \operatorname{Perm}(S)$. This gives a G-set structure on S. Action is $g.s = (\phi(g))(s)$.

Proposition 13.3. Every G-set S arises from some permutation representation. Given G-set S, need to define homomorphism $\phi: G \to \operatorname{Perm}(S)$, take $\phi(g)(s) = g.s.$

Definition 13.4. Let S_1, S_2 be G-sets. A morphism of G-sets is a function $\psi : S_1 \to S_2$ such that $g.\psi(S) = \psi(g.s)$ for all $g \in G, s \in S_1$. Say that ψ is G-equivalent or that ψ is compatible with the G-action.

14 Orbits and Stabilisers

Let G = group, S = G—set. Define relation \sim on S by $s \sim t \iff$ there exists $g \in G$ such that t = g.s.

Proposition 14.1. This \sim is an equivalence relation.

Proof. Reflexive: $1 \in G$. Symmetric: if t = g.s then $s = g^{-1}.t$. Transitive: if t = g.s and u = g'.t then u = g'.(g.s) = (g'g).s.

Corollary - Definition 14.2 (Orbits). The equivalence classes of \sim are called G-orbits. Also, S is a disjoint union of orbits. The G-orbit containing $s \in S$ is denoted $G.s = \{g.s : g \in G\}$. S/G denotes the set of G-orbits of S.

Proposition - Definition 14.3 (*G*-stable). Let *S* be a *G*-set. A subset $T \subseteq S$ is called *G*-stable if $g.t \in T$ for all $g \in G, t \in T$.

Proposition 14.4. Let S = G-set and $s \in S$. The orbit G.s is the smallest G-stable subset of S containing s.

Proof. G.s is G-stable. If T is a G-stable subset containing s then $G.s \subseteq T$. Check these.

Definition 14.5. We say G acts transitively on G-set S, if S consists of a single orbit. i.e. for all $t, s \in S$, there exists g : g.s = t.

Example 14.6. Let $G = \operatorname{GL}_n(\mathbb{R})_n(\mathbb{C})$. G acts on $S = M_n(\mathbb{C})$, the set of $n \times n$ matrices over \mathbb{C} , by conjugation, i.e. for all $A \in G = \operatorname{GL}_n(\mathbb{C})$, $M \in S$, $A.M = AMA^{-1}$. Let us check indeed this gives a group action. Check axioms. $(i)I_n.M = I_nMI^{-1} = M.(ii)A.(B.M) = A.(BMB^{-1}) = ABMB^{-1}A_1 = (AB)M(AB)^{-1} = (AB).M$. What are the orbits? $GM = \{AMA^{-1} : A \in \operatorname{GL}_n(\mathbb{C})\}$.

Definition 14.7 (Stabilisers). Let $s \in S$. Then the stabiliser of s is $stab_G(s) = \{g \in G : g.s = s\} \subseteq G$ **Proposition 14.8.** Let S be a G-set and let $s \in S$. Then $stab_G(s) \leq G$.

15 Structure of G-orbits

Proposition 15.1. Let $H \leq G$. Then G/H is a G-set with the action g'(gH) = (g'g)H for all $g, g' \in G$

Proof. Checking axioms to show G/H is a G-set.

- (i) 1.(qH) = qH
- (ii) g''.(g'.(gH)) = (g''g')(gH). LHS = g''.(g'gH) = g''g'g'H = (g''g')gH = RHS.

Theorem 15.2 (Structure of G-orbits). Suppose G acts transitively on S. Let $s \in S$ and $H = \operatorname{stab}_G(s) \leq G$. Then there is an isomorphism of G-sets: $\psi : G/H \to S; gH \mapsto g.s.$

Proof. Well-defined: if gH = g'H then g' = gh for $h \in H$. So we need to check g.s = g'.s. RHS = g'.s = (gh).s = g.(h.s) = g.s = LHS, for $h \in stab(s)$.

Next we need to check its a morphism of G-sets. i.e. $\psi(g'(gH)) = g'.\psi(gH) \implies (g'g).s = g'.(g.s)$. Next surjective because action is transitive. Injective: if $\psi(gH) = \psi(g'H) \implies g.s = g'.s \implies s = (g^{-1}g').s$. So $g^{-1}g' \in \operatorname{stab}(s) = H$ so $g' \in gH, gH = g'H$.

Corollary 15.3. If G is finite then, |G.s| divides |G| by Lagrange's theorem.

Proposition 15.4. Let S = G-set, $s \in S, g \in G$. Then $\operatorname{stab}_G(g.s) = g.\operatorname{stab}_G(s).g^{-1}$.

Corollary 15.5. Let $H_1, H_2 \leq G$ be conjugate. (i.e. $H_2 = gH_1g^{-1}$ for some $g \in G$). Then $G/H_1 \cong G/H_2$ as G-sets.

Definition 15.6. If S = a platonic solid (all faces same, and all regular polygons, and same number of faces at each vertex) and G = group of rotation symmetries = symmetries $\cap SO_3$.

Proposition 15.7. With notation as above, then $|G| = \text{number of faces} \times \text{number of edges on each face.}$

Proof. Let F = set of faces, G acts on F. Gives a G-set structure to F. Let $f \in F$ be a face, then G.f = F (i.e. action is transitive). By the theorem, $F \cong G/\operatorname{stab}_G(f)$. But $\operatorname{stab}_G(f) = \operatorname{rotations}$ around axis through face. $\operatorname{stab}_G(f) = \operatorname{number}$ of edges on each face which implies $|G| = |F||\operatorname{stab}_G(f)|$.

16 Counting Orbits and Cayley's Theorem

Let G be a group and S be a G-set.

Definition 16.1 (Fixed Point Set). The fixed point set of a subset $J \subseteq G$ is $S^J = \{s \in S : j.s = s \text{ for all } j \in J\}$.

Proposition 16.2. Let S be a G-set

- i) If $J_1 \subseteq J_2 \subseteq G$ then $S^{J_2} \subseteq S^{J_1}$
- ii) If $J \subseteq G$ then $S^J = S^{\langle J \rangle}$

Example 16.3. $G = \operatorname{Perm}(\mathbb{R}^2)$ acts naturally on $S = \mathbb{R}^2$. Let $\tau_1, \tau_2 \in G$ be reflections about lines L_1, L_2 . Then $S^{\tau_i} = L_i$, $S^{\{\tau_1, \tau_2\}} = L_1 \cap L_2$ and $S^{\langle \tau_1, \tau_2 \rangle} = L_1 \cap L_2$.

Theorem 16.4. Let G be a finite group and S be a finite G-set. Let |X| denote the cardinality of X. Then

number of orbits of $S = \frac{1}{|G|} \sum_{g \in G} |S^g|$ = average size of the fixed point set

Proof. Let $S = \bigcup_i S_i$ where S_i are G-orbits. Then $S^g = \bigcup_i S_i^g$. LHS $= \sum_i$ number of orbits of S_i (since S_i 's are union of G-orbits and S_i 's are disjoint) while RHS $= \sum_i \frac{1}{|G|} \sum_{g \in G} |S_i^g|$. Thus it suffices to prove theorem for $S = S_i$ and then just sum over i. But S are disjoint union of G-orbits, so can assume $S = S_i = G$ -orbit which by (Theorem 15.2), means $S \cong G/H$ for some $H \leq G$. So in this case

RHS =
$$\frac{1}{|G|} \sum_{g \in G} |S^g|$$

= $\frac{1}{|G|} \times \text{number of } (g, s) \in G \times S : g.s = s \text{ by letting } g \text{ vary all over } G$
= $\frac{1}{|G|} \sum_{s \in S = G/H} |\operatorname{stab}_G(s)|$

Note by proposition 15.4, these stabilisers are all conjugates, and hence all have the same size. Since $|\operatorname{stab}_G(1.H)| = |H|, |\operatorname{stab}_G(s)| = |H|$ for all $s \in S$. Hence RHS $= \frac{1}{G}|G/H||H| = \frac{|H|}{|G|}\frac{|G|}{|H|} = 1$ and LHS = number of orbits of S = 1 as S is assumed to be a G-orbit.

Example 16.5. Birthday cake with 8 slices. Red/green candle on each slide. How many ways? Notice that: two arrangments are the same if you can rotate one to get the other.

 $S = \{0, 1\}^8, |S| = 2^8 = 256.$ $\sigma \in \text{Perm}(S)$ acts by $\sigma(x_1, \dots, x_8) = (x_2, x_3, \dots, x_8, x_1).$ $G = \langle \sigma \rangle, |G| = 8.$ We want to find number of G-orbits. By the theorem above, this is equal to $\frac{1}{8} \sum_{g \in G} |S^g|$. Trying each g:

$$g = 1 \implies |S^{1}| = 2^{8} \qquad g = \sigma^{4} \implies |S^{\sigma^{4}}| = 2^{4}$$

$$g = \sigma \implies |S^{\sigma}| = 2 \qquad g = \sigma^{5} \implies |S^{\sigma^{5}}| = 2$$

$$g = \sigma^{2} \implies |S^{\sigma^{2}}| = 2^{2} \qquad g = \sigma^{6} \implies |S^{\sigma^{6}}| = 2^{2}$$

$$g = \sigma^{3} \implies |S^{\sigma^{3}}| = 2 \qquad g = \sigma^{7} \implies |S^{\sigma^{7}}| = 2$$
Final Answer: $\frac{1}{8}(256 + 16 + 4 + 4 + 4 + 4 + 2) = \frac{1}{8}(288) = 36$.

Definition 16.6 (Faithful Permutation Representation). A permutation representation $\phi: G \to \operatorname{Perm} S$ is faithful if $\ker \phi = 1$.

Theorem 16.7 (Cayley). Let G be a group. Then G is isomorphic to a subgroup of Perm(G). In particular, if $|G| = n < \infty$, then G is isomorphic to a subgroup of S_n .

Proof. Let G act oon itself: g.h = gh. This gives $\phi : G \to Perm(G)$. If $g \in G$ has property that gh = h for all $h \in G$ then g = 1. Clear, take h = 1.

Part II

Ring Theory

17 Rings

Definition 17.1 (Ring). A ring is an abelian group R, with group addition together with ring multiplication map $(\mu: R \times R \to R)$ satisfying:

- i) associativity: (rs)t = r(st) for all $r, s, t \in R$.
- ii) there exists $1_R \in R$ such that 1r = r and r1 = r for all $r \in R$.
- iii) distributive law: r(s+t) = rs + rt and (r+s)t = rt + st for all $r, s, t \in R$.

Similar to a group, 1 is unique and 0r = 0.

Example 17.2. $\mathbb{C}, \mathbb{Z}, \mathbb{R}, \mathbb{Q}$ are all rings.

Example 17.3. Let V be a vector space over \mathbb{C} . Define $\operatorname{End}_{\mathbb{C}}(V)$ be the set of linear maps $T:V\to V$. Then $\operatorname{End}_{\mathbb{C}}(V)$ is a ring when endowed with ring additional equal to sum of linear maps, ring multiplication equal to composition of linear maps. $0=\operatorname{constant}$ map to $\mathbf{0}$ and $1=\operatorname{id}_V$.

Proposition - Definition 17.4 (Subrings). A subset of $S \subseteq R$ is a subring if:

- i) $s + s' \in S$ for all $s, s' \in S$
- ii) $ss' \in S$ for all $s, s' \in S$
- iii) $-s \in S$ for all $s \in S$
- iv) $0_R \in S$
- v) $1_R \in S$.

Then S becomes a ring with restricted $+,\cdot,0,1$. Note the identity 1_R is the identity from R.

Example 17.5. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are all substrings of \mathbb{C} . Also the set of Gaussian integers $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ is a subring.

Example 17.6. Matrices $M_n(\mathbb{R})$ and $N_n(\mathbb{C})$ both form rings. The set of upper triangular matrices form a subring.

Proposition 17.7. i) subrings of subrings are subrings

ii) intersection of subrings is a subring

Proposition - Definition 17.8 (Units). Let R = ring. An element $u \in R$ is called a unit or invertible if there exists $v \in R$ such that uv = 1 and vu = 1. Define $R^* = \{\text{set of units in } R\}$ as a group (with multiplicative structure).

Example 17.9. $\mathbb{Z}^* = \{1, -1\}, \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$

Definition 17.10 (Commutative Ring). A ring R is commutative if rs = sr for all $r, s \in R$.

Definition 17.11 (Fields). A commutative ring R is a field if $R^* = R - 0$. i.e. Every non-zero element is invertible.

18 Ideals and Quotient Rings

Let R = ring.

Definition 18.1 (Ideals). A subgroup I of the underlying abelian group R is called an ideal of R if for all $r \in R, x \in I$, we have $rx \in I$ and $xr \in I$.

Then we write $I \subseteq R$.

Example 18.2. $n\mathbb{Z} \leq \mathbb{Z}$ is an ideal of \mathbb{Z} . It is a subgroup as if $m \in n\mathbb{Z}$ then $rm \in n\mathbb{Z}$ for any integer r.

Lemma 18.3. If $\{I_i\}_{i\in A}$ ideals in R then $\bigcap_{i\in A}I_i$ is an ideal of R.

Corollary 18.4. Let R = ring, $S \subseteq R$ any subset. Let J = set of all ideals $I \subseteq R$ such that $S \subseteq I$. Define $\langle S \rangle = \bigcap_{I \in J} J$ as the ideal generated by S. (i.e. smallest ideal containing S).

Proposition 18.5. i) If $I, J \subseteq R$ then ideal generated by $I \cup J$ is $I + J = \{i + j : i \in I, j \in J\}$.

- ii) Assume R is commutative and $x \in R$. Then $\langle x \rangle = Rx = \{rx : r \in R\} \subseteq R$.
- iii) R commutative, $x_1, \ldots, x_n \in R$. Then $\langle x_1, \ldots, x_n \rangle = Rx_1 + \ldots Rx_n = \{r_1x_1 + \ldots r_nx_n : r_1, \ldots, r_n \in R\}$. Set of R-linear combinations of x_1, \ldots, x_n .

Proposition - Definition 18.6 (Quotient Rings). Let $I \subseteq R$. The abelian group R/I has a well-defined multiplication map $\mu: R/I \times R/I \to R/I$; $(r+I, s+I) \mapsto rs+I$ which makes R/I into a ring, called the quotient ring of R by I.

Proof. Check multiplication is well defined, given $x, y \in I$, we need rs + I = (r + x)(s + y) + I. RHS = rs + xs + ry + xy + I = rs + I as $xs, ry, xy \in I$. Note that the ring axioms for R/I follow from ring axioms for R.

Example 18.7. Again $\mathbb{Z}/n\mathbb{Z}$ is essentially modulo n arithmetic, i.e. $(i + n\mathbb{Z})(j + n\mathbb{Z}) = ij + n\mathbb{Z}$. Thus $\mathbb{Z}/n\mathbb{Z}$ represents not only the addition but also the multiplication in modulo n.

19 Ring Homomorphisms

Proposition - Definition 19.1 (Homomorphism). Let R, S be rings. A ring homomorphism is a group homomorphism $\phi: R \to S$ such that:

- i) $\phi(1_R) = 1_S$
- ii) $\phi(rr') = \phi(r)\phi(r')$ for all $r, r' \in R$.

Definition 19.2 (Isomorphism). A ring isomorphism is a bijective ring homomorphism $\phi: R \to S$. In this case ϕ^{-1} is also a ring homomorphism. We write $R \cong S$ as rings.

Proposition 19.3. Let $\phi: R \to S$ be a ring homomorphism.

- i) If R' is a subring of R then $\phi(R')$ is a subring of S.
- ii) If S' is a subring of S then $\phi^{-1}(S')$ is a subring of R.
- iii) If $I \subseteq S$ then $\phi^{-1}(I) \subseteq R$

Corollary 19.4. In particular, Im $\phi = \phi(R)$ is a subring of S and ker $\phi = \phi^{-1}(0) \leq R$.

Theorem 19.5. Let R = ring, I = ideal with $\pi : R \to R/I$ be a quotient map. Suppose $\phi : R \to S$ is a ring homomorphism such that $I \subseteq \ker \phi$. Recall group situation gives a map $\psi : R/I \to S$ then ψ is also a ring homomorphism. Special case for $I = \ker \phi : R/\ker \phi \cong \operatorname{Im} \phi$ (as rings).

Proposition 19.6. Let $J \subseteq R$ and let $\pi: R \to R/J$ be quotient map. Then there is a 1-1 correspondence:

$$\{I \trianglelefteq R \text{ such that } J \subseteq I\} \leftrightarrow \{\text{ideals } \bar{I} \trianglelefteq R/J\}$$

Definition 19.7. An ideal $I \subseteq R$, with $I \neq R$, is called maximal if it is not contained in any strictly larger ideal $J \neq R$.

Example 19.8. $10\mathbb{Z} \leq \mathbb{Z}$ is not maximal as $10\mathbb{Z} \subsetneq 2\mathbb{Z} \leq \mathbb{Z}$. However $2\mathbb{Z} \leq \mathbb{Z}$ is maximal.

Proposition 19.9. Let $R \neq 0$ be a commutative ring.

- i) R is a field \iff every proper ideal is maximal
- ii) if $I \subseteq R$, with $I \neq R$, I is maximal $\iff R/I$ is a field

Proof. Assume R is a field. Let $I \subseteq R$, and assume $I \neq 0$. Then can choose $x \in I, x \neq 0$. Then x is invertible, let $y = x^{-1}$ then $1 = yx \in I$ therefore I = R.

Converse: assume only ideals of R are 0 and R. Take any $x \in R, x \neq 0$. Consider $I = \langle x \rangle$, cannot be 0, since $x \in I$ then I = R so xy = 1 for some y. This proves x is invertible so R is a field.

Theorem 19.10 (Second Isomorphism Theorem). R is a ring. $I \subseteq R, J \subseteq R$ with $J \subseteq I$. Then $\frac{R/J}{I/J} \cong R/I$.

Proof. Consider $R \to R/J \to \frac{R/J}{I/J}$, show kernel is I. Then follows from First Isomorphism Theorem.

Theorem 19.11 (Third Isomorphism Theorem). Let $S \subseteq R$ be a subring and $I \subseteq R$. Then S + I is a subring of R and $S \cap I \subseteq S$.

$$\frac{S}{S \cap I} \cong \frac{S+I}{I}.$$

Example 19.12. $S = \mathbb{C}[x]$ subring of $R = \mathbb{C}[x, y]$. Let $I = \langle y \rangle \subseteq \mathbb{C}[x, y]$.

- $S \cap I = \mathbb{C}[x] \cap \langle y \rangle = 0.$
- $S + I = \mathbb{C}[x, y] = R$

Then by the Third Isomorphism Theorem,

$$\frac{S}{S \cap I} = \frac{\mathbb{C}[x]}{0} = \mathbb{C}[x] \quad \text{and} \quad \frac{S+I}{I} = \frac{\mathbb{C}[x,y]}{\langle y \rangle},$$
$$\mathbb{C}[x,y]/\langle y \rangle \cong \mathbb{C}[x].$$

20 Polynomial Rings

Definition 20.1 (Polynomials). Let R be a ring. A polynomial in x with coefficients in R is a formal expression of the form

$$p = \sum_{i \ge 0} r_i x^i$$
 where $r_i \in R$ and $r_i = 0$ for all sufficiently large i .
 $= r_0 x^0 + r_1 x^1 + \dots + r_n x^n$.

Let R[x] denote the set of all such polynomials.

Proposition - Definition 20.2 (Polynomial Ring). R[x] is a ring. called the (univariate) polynomial ring with coefficients in R, when equipped with:

- Addition: $\sum_{i>0} r_i x^i + \sum_{i>0} r'_i x^i = \sum_{i>0} (r_i + r'_i) x^i$.
- Multiplication: $\left(\sum_{i\geq 0} r_i x^i\right) + \left(\sum_{i\geq 0} r_i' x^i\right) = \sum_{i\geq 0} \left(\sum_{j+k=i} r_j r_k'\right) x^i$.
- Zero: $r_i = 0$ for all i.
- One: $r_0 = 1$ and $r_i = 0$ for all $i \ge 1$.

Proposition 20.3. Let $\phi: R \to S$ be a ring homomorphism

- i) R is a subring of R[x] under $r \mapsto r + 0x + 0x^2 + \dots$
- ii) ϕ induces $\phi[x]: R[x] \to S[x]$ where $\phi\left(\sum_{i \geq 1} r_i x^i\right) = \sum_{i \geq 0} \phi(r_i) x^i$ and this is a ring homomorphism.

Definition 20.4 (Evaluation Homomorphism). Let $S \subset R$ be a subring. Let $r \in R$ such that rs = sr for all $s \in S$. Define evaluation map:

$$\epsilon_r: S[x] \to R; \quad p = \sum_{i>0} s_i x^i \mapsto \sum_{i>0} s_i r^i = p(r).$$

Proposition 20.5. ϵ_r is a ring homomorphism from $S[x] \to R$.

Corollary 20.6. Assume R is commutative. Consider the map $c: S[x] \to \operatorname{Fun}(R,R); p \mapsto (r \mapsto p(r)).$ Then c is a ring homomorphism.

Example 20.7. $p(x) := x^2 + x \in (\mathbb{Z}/2\mathbb{Z})[x]$. Trying values

$$p(0) = 0^2 + 0 = 0$$
 $p(1) = 1^2 + 1 = 0$

 $p(\alpha) = 0$ for all α in domain $(\mathbb{Z}/2\mathbb{Z})$. We have $p \neq 0$ in $(\mathbb{Z}/2\mathbb{Z})[x]$ but c(p) = 0. That is, p defines a zero function.

Polynomials in Several Variables A possible definition is that

$$R[x_1, x_2, \dots, x_n] = (\dots((R[x_1])[x_2])[x_3] \dots [x_n]) = R[x_1][x_2] \dots [x_n].$$

Another definition is that $R[x_1, \ldots, x_n] = \{\sum_{i \in \mathbb{N}^n} r_i x^i : \text{ only finitely many non-zero } r_i$'s.\}. Defined similarly to $i = (i_1, \ldots, i_n) : x^i = x_1^{i_1} x_2^{i_2} \ldots x_n^{i_n}$. This definition then requires you to define suitable ring operations.

Proposition - Definition 20.8. Let S be a subring of commutative ring R and $r_1, \ldots, r_n \in R$. Then $S[r_1, \ldots, r_n]$ is the subring of R generated by $S \cup \{r_1, \ldots, r_n\}$. Equivalently it is the image of $S[x_1, \ldots, x_n]$ under the evaluation map $x_i \mapsto r_i$ for all i.

Example 20.9. $R = \mathbb{C}, S = \mathbb{Z}$. Then $\mathbb{Z}[i]$ is the subring generated by \mathbb{Z} and i. That is,

$$\mathbb{Z}[i] = \operatorname{Im}(\epsilon_i : \mathbb{Z}[x] \to \mathbb{C}) = \left\{ \sum_{j \ge 0} a_j i^j : a_j \in \mathbb{Z} \right\} = \{a + ib : a, b \in \mathbb{Z}\}$$

21 Matrix Rings

Let R be a ring. Then $M_n(R)$ is the set of $n \times n$ matrices with entries in R. Denoted,

$$(r_{ij}) = \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{21} & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ r_{n1} & r_{n2} & \cdots & r_{nn} \end{pmatrix} \quad r_{ij} \in R.$$

Proposition 21.1. $M_n(R)$ is a ring with operations

- $(a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})$
- $(a_{ij})(b_{ij}) = (c_{ij})$ where $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$. Here order of multiplication is significant.

$$\bullet \ 1_{M_n(R)} = \begin{pmatrix} 1_R & 0 & \cdots & 0 \\ 0 & 1_R & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1_R \end{pmatrix}$$

Note R not necessarily commutative. e.g. $M_3(M_2(\mathbb{R}))$.

Example 21.2. In
$$M_2(\mathbb{C}[x])$$
, $\begin{pmatrix} 1 & x \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x^3 & 0 \\ 4 & -x^5 \end{pmatrix} = \begin{pmatrix} 4x + x^3 & -x^6 \\ 8 & -2x^5 \end{pmatrix}$

22 Direct Products

Proposition 22.1. Let R_i , $i \in I$ be rings. $\Pi_{i \in I} R_i$ is already an abelian group under addition. It becomes a ring with multiplication: $(r_i)(s_i) = (r_i s_i)$ and identity $(1_R, 1_R, \dots,)$

Example 22.2. For $\mathbb{R} \times \mathbb{R}$, we define

- Addition: (a, b) + (a', b') = (a + a', b + b')
- Multiplication: (a,b)(a',b') = (aa',bb')
- Identity: (1, 1)

Note \mathbb{R} is a field. But $\mathbb{R} \times \mathbb{R}$ is not a field because (1,0) has no inverse.

Lemma 22.3. Let R be a commutative ring and $I_1, \ldots, I_n \leq R$ such that $I_i + I_j = R$ for each pair of i, j. Then $I_1 + \bigcap_{i \geq 2} I_i = R$.

Proof. Choose $a_i \in I_1, b_i \in I_i$ such that $a_i + b_i = 1$ for i = 2, ..., n since $I_1 + I_i = R$. Then

$$1 = (a_2 + b_2)(a_3 + b_3) \dots (a_n + b_n)$$

= [sum of terms involving a_i] + $(b_2b_3 \dots b_n)$
 $\in I_1 + \bigcap_{i>2} I_i$.

So $R = I_1 + \bigcap_{i>2} I_i$ as $r \in R, r1 = r \in I_1 + \bigcap_{i>2} I_i$.

Theorem 22.4 (Chinese Remainder Theorem). Let R be a commutative ring and $I_1, \ldots, I_n \leq R$ such that $I_i + I_j = R$ for each pair of i, j. Then the natural map

$$R/\cap_{i=1}^{n} I_{i} \to R/I_{1} \times R/I_{2} \times \cdots \times R/I_{n}$$

$$r+\cap_{i=1}^{n} I_{i} \mapsto (r+I_{1},r+I_{2},\ldots,r+I_{n})$$

is an isomorphism.

Proof. (Missing some details). We prove the result by induction on n. Let n=2. Consider $\psi: R/(I_1\cap I_2)\to R/I_1\times R/I_2$ with $r+(I_1\cap I_2)\mapsto (r+I_1,r+I_2)$. Then ψ is well-defined if $r-s\in I_1\cap I_2$ then $r+I_1=s+I_1$ and $r+I_2=s+I_2$. If $\psi(r+(I_1\cap I_2))=0$ then $r\in I_1$ and $r\in I_2$ so $r\in I_1\cap I_2$ so ψ is injective. Choose $x_1\in I_1, x_2\in I_2$ such that $x_1+x_2=1$. Now given r_1 and r_2 , observe $\psi(r_2x_1+r_1x_2)=(r_2x_1+r_1x_2+I_1,r_2x_1+r_1x_2+I_2)$. Consider $r_2x_1+r_1x_2+I_1$. Then $r_2x_1\in I_1$

as $x_1 \in I_1$ and $r_1x_2 = r_1(1 - x_1) = r_1 - r_1x_1$ with $x_1 \in I_1$ which implies $r_2x_1 + r_1x_2 + I_1 = r_1 + I_1$. Similarly $r_2x_1 + r_1x_2 + I_2 = r_2 + I_2$. So $\psi(r_2x_1 + r_1x_2) = (r_1 + I_1, r_2 + I_2)$ hence ψ is onto. Using the above lemma, we have the n = 2 case.

Example 22.5. If $R = \mathbb{Z}$, $I_1 = 3\mathbb{Z}$, $I_2 = 5\mathbb{Z}$ then $I_1 \cap I_2 = 15\mathbb{Z}$. So we have the following isomorphism,

$$\mathbb{Z}/15\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$$

 $n + 15\mathbb{Z} \mapsto (r + 3\mathbb{Z}, r + 5\mathbb{Z})$

Note $\mathbb{Z}/24\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ is not an isomorphism.

23 Field of Fractions

In this section let R be a commutative ring.

Definition 23.1 (Domain). R is called a domain (or integral domain) if for all $r, s \in R : rs = 0 \implies r = 0$ or s = 0. i.e. R does not have non-trivial zer divisors.

Example 23.2. $\mathbb{Z}, \mathbb{C}[x_1, \dots, x_n]$ are both domains. $\mathbb{Z}/6\mathbb{Z}$ is not a domain as $2 \times 3 = 0$ but neither $2 \neq 0, 3 \neq 0$. However $\mathbb{Z}/p\mathbb{Z}$ for a prime p is a domain. In fact, any field is a domain.

Then we define $\tilde{R} = R \times (R - 0) = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} : a \in R, b \in R - 0 \right\}$. Now define a relation on \tilde{R} : $\begin{pmatrix} a \\ b \end{pmatrix} \sim \begin{pmatrix} a' \\ b' \end{pmatrix}$ if ab' = a'b.

Lemma 23.3. \sim is an equivalence relation on \tilde{R} .

Proof. Reflexive and symmetric are easy. For transitivity, if ab' = a'b and a'b'' = a''b' then the first equation implies $ab'b'' = a''bb'' = a''bb' \implies (ab'' - a''b)b' = 0$. Since R is a domain then ab'' = a''b.

Notation Let $\frac{a}{b}$ denote the equivalence class of $\begin{pmatrix} a \\ b \end{pmatrix}$ and $K(R) = \tilde{R}/\sim$, the set of fractions.

Lemma 23.4. The operations $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ give well-defined addition and multiplication on K(R).

Theorem 23.5. These ring addition/multiplication maps make K(R) into a field, with $0_{K(R)} = \frac{0_R}{1_R}$ and $1_{K(R)} = \frac{1_R}{1_R}$.

Example 23.6. $K(\mathbb{Z}) = \mathbb{Q}$ and $K(\mathbb{R}[x]) = \text{set of real rational functions} = \left\{\frac{f(x)}{g(x)}: f, g \in \mathbb{R}[x], g \neq 0\right\}$. Similarly, $K(\mathbb{Q}[x]) = \left\{\frac{f(x)}{g(x)}: f, g \in \mathbb{Q}[x], g \neq 0\right\} = K(\mathbb{Z}[x])$. Let F be a field, then $K(F[x_1, \dots, x_n]) = F(x_1, \dots, x_n)$, where this indicates a field of rational functions in x_1, \dots, x_n over F.

Proposition 23.7. i) The map $\iota: R \to K(R)$; $\alpha \mapsto \frac{\alpha}{1}$ is an injective ring homomorphism. This allows us to consider R as a subring of K(R).

ii) If S is a subring of R then K(S) is essentially a subring of K(R).

Proposition 23.8. If F is a field, then K(F) = F. i.e. the map $\iota : F \to K(F)$ is an isomorphism.

Proof. Injective from above. Surjectivity as given $\frac{a}{b} \in K(F), b \neq 0$, then $\iota(ab^{-1}) = \frac{ab^{-1}}{1} = \frac{a}{b}$ because $(ab^{-1})b = 1a$.

Example 23.9. By the above proposition we have $K(\mathbb{Q}[i]) = \mathbb{Q}[i] = \{r + si : r, s \in \mathbb{Q}\}$. But by Proposition 23.7, $\mathbb{Z}[i] \leq \mathbb{Q}[i] \implies K(Z[i]) \leq K(\mathbb{Q}[i])$ and hence $K(\mathbb{Z}[i]) = \mathbb{Q}[i]$. More generally, K(R) is the smallest field containing R.

24 Introduction to Factorisation Theory

In this section let R be a commutative domain.

Definition 24.1 (Prime Ideal). An ideal $P \subseteq R, P \neq R$ is called prime if R/P is a domain. Equivalently, if $rs \in P$ then either $r \in P$ or $s \in P$ (or both).

Example 24.2. $\mathbb{Z}/p\mathbb{Z}$ for prime p, is a domain, so $p\mathbb{Z} \subseteq \mathbb{Z}$. $(0) \subseteq \mathbb{Z}$ is prime but not maximal.

 $\langle y \rangle \subseteq \mathbb{C}[x,y]$ is prime because $\mathbb{C}[x,y]/\langle y \rangle \cong \mathbb{C}[x]$ is a domain.

If $m \leq R$ is maximal, then m is prime because R/m is a field which implies R/m is a domain.

Definition 24.3 (Divsibility). Let $r, s \in R$. We say $r \mid s$, "r divides s" if s = rt for some $t \in R$. Equivalently $s \in \langle r \rangle$ or $\langle s \rangle \subseteq \langle r \rangle$.

Example 24.4. $3 \mid 6 \text{ as } 6\mathbb{Z} \subseteq 3\mathbb{Z}$.

Definition 24.5 (Associates). Let $r, s \in R - 0$ are associates if one of the following two equivalent conditions hold:

- $\langle r \rangle = \langle s \rangle$ i.e. $r \mid s$ and $s \mid r$.
- There is a unit $u \in R^*$ (u is a unit of R) with r = us.

Example 24.6. In $\mathbb{Z}: \langle -2 \rangle = \langle 2 \rangle$ so 2, -2 are associates. In $\mathbb{Z}[i]: \langle 3i \rangle = \langle 3 \rangle = \langle -3 \rangle$.

Definition 24.7 (Primes). An element $p \in R, p \neq 0$ is prime if $\langle p \rangle$ is prime. Equivalently p is not a unit, and $p \mid rs \implies p \mid r$ or $p \mid s$.

Definition 24.8 (Irreducibles). An element $p \in R, p \neq 0, p$ is not a unit, is irreducible whenever p = rs, either r or s is a unit.

Example 24.9. $p = 5 = 5 \cdot 1 = (-5)(-1) = 1 \cdot 5 = (-1)(-5)$, so 5 is irreducible. $p = 4 = 2 \cdot 2$ but neither 2 nor 2 are units, so 4 is not irreducible.

Proposition 24.10 (Prime implies Irreducible). Suppose $p \in R$ is prime. Then p is not a unit (otherwise $\langle p \rangle = R$ is not prime). Suppose $p = rs, r, s \in R$ then $p \mid rs$. Without loss of generality say $p \mid r$, so r = pq for some $q \in R$. Then $p = pqs \implies 1 = qs$, so s is a unit.

Definition 24.11 (Unique Factorisation Domains). R is a unique factorisation domain (UFD) if

- i) every nonzero non-unit $r \in R$ can be written as $r = p_1 \cdots p_n$ with all p_i irreducible.
- ii) if $r = p_1 \cdot p_n = q_1 \cdots q_m$ with all p_i, q_i irreducible, then n = m and we can re-index the q_i such that p_i and q_i are associates for all i.

```
Example 24.12. \mathbb{Z} is a UDF. In \mathbb{Z}, 30 = 2 \cdot 3 \cdot 5 = (-5)(-3)2. 12 = 2 \cdot 2 \cdot 3 = (-2)2(-3).
```

Lemma 24.13. Assume every irreducible is prime. If r can be factored into irreducible (as in (i)) then the factorisation is unique (i.e. as in (ii)).

Example 24.14. $R = \mathbb{C}[x]$ so $\mathbb{C}[x]^{\times} = \mathbb{C}^{\times}$. Any complex polynomial factors into linear factors (Fundamental Theorem of Algebra) so the irreducible are linear polynomias, i.e. $\alpha(x-\beta)$, $\beta \in \mathbb{C}$, $\alpha \in \mathbb{C}^{\times}$. We prove $x-\beta$ is prime as $\mathbb{C}[x]/\langle x-\beta\rangle \cong \mathbb{C}$ is a domain. i.e. every irreducible is prime.

Proof. Suppose $r \in R$, $r = p_1 \cdots p_n = q_1 \cdots q_m$ (both products of irreducibles). Induction on n. $n = 1, p_1 = q_1 \cdots q_m$. Then by definition of irreducible, m = 1 and $p_1 = q_1$.

Now suppose n > 1, $p_1 \cdots p_n = q_1 \cdots q_m$. Then $p_1 \mid q_1 \cdots q_m$, but p_1 irreducible which means p_1 is prime. Then p_1 divides some q_i . After permuting q_i 's, assume $p_1 \mid q_1$. So $q_1 = p_1 u$ where u is a unit. Cancel out p_1, q_1 from relation, $p_2 \cdots p_n = (uq_2)q_3 \cdots q_m$. By induction, $(p_2 \cdots p_n)$ is a permutation $(uq_2 \cdots q_m)$ up to associates.

25 Principal Ideal Domains

Definition 25.1 (Principal Ideal Domain). Let R be a commutative ring. An ideal I is principal if $I = \langle r \rangle, r \in R$ (generated by a single element). A principal ideal domain (PID) is a domain where every ideal is principal.

Example 25.2. \mathbb{Z} is a PID, every ideal of is of the form $n\mathbb{Z}$.

Proposition 25.3. Let R be a PID. Let $p \in R, p \neq 0$, then p is irreducible if and only if $\langle p \rangle$ is maximal.

Proof. (\iff) Assume p is not irreducible, so p = rs. Neither r, s are units. Then $\langle p \rangle = \langle rs \rangle \subsetneq \langle r \rangle$ so $\langle p \rangle$ is not maximal. (Alternatively: $\langle p \rangle$ maximal $\implies \langle p \rangle$ prime $\implies p$ prime $\implies p$ irreducible.)

 (\Longrightarrow) Suppose $\langle p \rangle \subseteq I$. Since R is a PID, $I = \langle q \rangle$ for some q hence $q \mid p$. Since p irreducible, either $q = up(u \in R^*) \implies I = \langle q \rangle = \langle p \rangle$ or q is a unit so $I = \langle q \rangle = R$.

Corollary 25.4. In a PID, irreducibles are prime.

Proof. p ideal $\implies \langle p \rangle$ maximal $\implies R/\langle p \rangle$ is a field $\implies R/\langle p \rangle$ is a domain $\implies \langle p \rangle$ prime $\implies p$ is prime.

Note, in a PID factorisations are unique if they exist.

Lemma 25.5. Let S be a ring. Let I_0, I_1, I_2, \ldots are ideals of S such that $I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots$. Then $\bigcup_{i \geq 0} I_i$ is an ideal of S.

Proof. Suppose $x, y \in \bigcup_{i \geq 0} I_i$ then $x \in I_n$ and $y \in I_m$, so $x, y \in I_k$ where $k = \max(n, m)$ therefore $x + y \in T_k \subseteq \bigcup_{i \geq 0} T_i$. Then prove other ideal properties.

Theorem 25.6. Any PID is a UFD.

Proof. We need to prove that any $r_0 \in R$, not has a factorisation into ideals. Suppose $r_0 \in R$, not a unit is not a product of irreducibles. In particular r itself is not irreducible, so $r = r_1q_1$ where r_1, q_1 not units. At least one of r_1, q_1 is not a product of irreducibles. Repeat this argument for $r_1 = r_2q_2$ where without loss of generality, r_2 is not a product of irreducibles. Then we have r_0, r_1, r_2 so $r_1 \mid r_0, r_2 \mid r_1$ etc.. Then $\langle r_0 \rangle \subseteq \langle r_1 \rangle \subseteq \langle r_2 \rangle \subseteq \dots$

Let $I = \bigcup_{i \geq 0} \langle r_i \rangle$. By the previous Lemma, I is an ideal. Since R is a PID, $I = \langle s \rangle$, $s \in R$. So $s \in \langle r_n \rangle$ for some n, $I \subseteq \langle r_n \rangle \subseteq \langle r_{n+1} \rangle \subseteq \cdots \subseteq I$. So in fact, $I = \langle r_n \rangle = \langle r_{n+1} \rangle = \cdots$ but this contradicts $\langle r_n \rangle \subsetneq \langle r_{n+1} \rangle$ because $r_n = r_{n+1}q_{n+1}$ where q_{n+1} is not a unit.

Definition 25.7 (Greatest Common Divisor). Let R be a PID (works for UFD). Let $r, s \in R, r, s \neq 0$. Then a greatest common divisor (gcd) of r and s is an element $d \in R$ such that $d \mid r, d \mid s$ and if $c \in R$ is any element such that $c \mid r, c \mid s$, then $c \mid d$. Write $d = \gcd(r, s)$. d is defined only up to units.

Any 2 gcd's divide each other so are associates.

Proposition 25.8. In a PID, $r, s \in R - \{0\}$ then r, s have a gcd d such that $\langle d \rangle = \langle r, s \rangle$.

Proof. Given r, s. Consider $\langle r, s \rangle = \{ar + bs : a, b \in R\}$. Since R is PID, $\langle r, s \rangle = \langle d \rangle$ for some $d \in R$. $d \mid r$ is clear since $r \in \langle d \rangle$. Similarly $d \mid s$. Now suppose $c \mid r$ and $c \mid s$. Then $r, s \in \langle c \rangle \implies \langle r, s \rangle \subseteq \langle c \rangle \implies \langle d \rangle \subseteq \langle c \rangle \implies c \mid d$.

26 Euclidean Domains

The motivation here is to give a useful criterion for a commutative domain to be a PID and UFD.

Proposition 26.1. $R = \mathbb{C}[x]$ is a PID.

Proof. Let I be a nonzero ideal in $\mathbb{C}[x]$. Let $f \in I$ be a nonzero element of smallest degree. It is clear that $\langle f \rangle \subseteq I$. Now given any $g \in I$, divide g by f : g = fq + r, where either r = 0 or $\deg r < \deg f$ (This uses the fact that $\mathbb{C}[x]$ has a division algorithm). Thus $f \in I$, so $qf \in I$ also $g \in I \implies r = g - qf \in I$. By choice of f (minimal degree in I) we must have r = 0. Therefore $f \mid g$ i.e. $g \in \langle f \rangle$ so $I = \subseteq \langle f \rangle$. This proves $I = \langle f \rangle$.

Definition 26.2 (Euclidean Domain). Let R be a commutative domain. A function $\nu : R - \{0\} \to \mathbb{N}$ is called a Euclidean function on R if:

- i) for all $f, p \in R, p \neq 0$, there exists $q, r \in R$ such that f = pq + r where either r = 0 or $\nu(r) < \nu(p)$.
- ii) if $f, g \in R \{0\}$ then $\nu(f) \le \nu(fg)$.

If R has such a function, we call it an Euclidean domain.

Example 26.3. If R = F[x] where F is a field. Then $\nu(f) = \deg f$. If $R = \mathbb{Z}$, then $\nu(n) = |n|$.

Theorem 26.4. Let R be a Euclidean domain with ν . Then R is a PID and hence a UFD.

Proof. Let $I \subseteq R$ be nonzero ideal. Choose $f \in I$ with minimal $\nu(f)$. Clearly $\langle f \rangle \subseteq I$. Given $g \in I$ write g = qf + r with r = 0 or $\nu(r) < \nu(f)$ as before (previous proof) $r \in I$. So r = 0 then $f \mid g$ so $I \subseteq \langle g \rangle$.

Lemma 26.5. Let R be one of $\mathbb{Z}[i] = \mathbb{Z}[\sqrt{-1}], \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\frac{1+\sqrt{-3}}{2}], \mathbb{Z}[\frac{1+\sqrt{-7}}{2}], \mathbb{Z}[\frac{1+\sqrt{-11}}{2}].$ Define $\nu: R \to \mathbb{R}$ by $\nu(z) = |z|^2$. Then

- i) ν takes integer values on R
- ii) for any $z \in \mathbb{C}$, there is some $s \in R$ such that $\nu(z s) < 1$.

Proof. We prove this for $\mathbb{Z}[\sqrt{-2}] = \{a + b\sqrt{-2} : a, b \in \mathbb{Z}\}$. Then $\nu(a + b\sqrt{-2}) = |a + b\sqrt{-2}|^2 = a^2 + 2b^2 \in \mathbb{N}$. Let $z = x + iy \in \mathbb{C}$. Choose s to be closest $a + b\sqrt{-2}$ to z. Then $|a - x| \le \frac{1}{2}$ and $|b\sqrt{2} - y| \le \frac{\sqrt{2}}{2}$. Then

$$|s-z|^2 = |(a+b\sqrt{-2}) - (x+iy)^2 \le (\frac{1}{2})^2 + (\frac{\sqrt{2}}{2})^2 = \frac{3}{4} < 1.$$

So $\nu(s-z) < 1$. We can repeat this argument for the other cases with simple modification of the argument.

Theorem 26.6. Let R be one of the rings from the previous lemma. Then ν is a Euclidean norm on R.

Note For the remainder of this section, denote R to be a Euclidean domain and $\nu: R \to \mathbb{Z}_+$ the Euclidean norm.

Proposition 26.7. Let $I \subseteq R$ be an ideal. Let $p \in I, p \neq 0$. Then p generates $I \iff \nu(p)$ is minimal (on I). In particular, $p \in R^* \iff \nu(p) = \nu(1)$.

Proof. If $\nu(p)$ minimal then by the results prior $I = \langle p \rangle$. Conversely, if $I = \langle p \rangle$ and $f = gp \in I$ for some g then $\nu(f) = \nu(gp) \geq \nu(p)$.

Example 26.8. In
$$\mathbb{Z}[i]: \nu(z) = |z|^2$$
. $u \in \mathbb{Z}[i]^* \implies |u|^2 = 1 \implies u = \pm 1, \pm i$. Also, $\mathbb{Z}[\sqrt{-2}]^* = \{\pm 1\}$ for $\nu(z) = |z|^2$.

Theorem 26.9 (Euclidean Algorithm). To find the gcd of two elements f and g we can use the following algorithm. Assume $\nu(f) \geq \nu(g)$. Find $q, r \in R$ such that f = qg + r with either r = 0 or $\nu(r) < \nu(g)$. If r = 0, then $\langle f, g \rangle = \langle g \rangle$ because $f \in \langle f \rangle$ so the gcd is g. If $r \neq 0$, then $\langle f, g \rangle = \langle g, r \rangle$ since $f \in \langle g, r \rangle (f = qg + r), r \in \langle f, g \rangle (r = f - qg)$. So $\gcd(f, g) = \gcd(g, r)$. In this case, repeat first step with g, r instead of f, g. The algorithm terminates because $\nu(r) < \nu(g)$ and \mathbb{N} has minimum at 0.

Example 26.10. In $R = \mathbb{Z}[\sqrt{-2}]$, find $gcd(y + \sqrt{-2}, 2\sqrt{-2})$ for y odd. Answer is 1, see course notes for computation.

Theorem 26.11. The only integer solutions to $y^2 + 2 = x^3$ are $y = \pm 5, x = 3$.

Proof. If y is even, then x^3 is even, then x is even. So $x^3 = 0 \mod 8$. But LHS can only be 2 or 6 mod 8, hence ymust be odd.

Let's work in $\mathbb{Z}[\sqrt{-2}]$. The equation becomes $(y+\sqrt{-2})(y-\sqrt{-2})=x^3$.

$$\gcd(y + \sqrt{-2}, y - \sqrt{-2}) = \gcd(y + \sqrt{-2}, (y - \sqrt{-2}) - (y + \sqrt{-2}))$$
$$= \gcd(y + \sqrt{-2}, 2\sqrt{-2})$$
$$= 1.$$

Now have: $(y + \sqrt{-2})(y - \sqrt{-2}) = x^3$. By UFD, $y + \sqrt{-2} = u\alpha^3$ where $u \in \mathbb{Z}[\sqrt{-2}]^*, \alpha \in \mathbb{Z}[\sqrt{-2}]$.

More detail: consider prime factorisation of $y+\sqrt{-2}, y-\sqrt{-2}, x^3$. Any prime must occur as p^{3e} on RHS for some $e \in \mathbb{Z}$. If $e \ge 1$, then $p \mid$ either $y+\sqrt{-2}$ or $y-\sqrt{-2}$ but not both. So p^{3e} is the exact power of p divides either $y+\sqrt{-2}$ or $y-\sqrt{-2}$.

Possible units: $u \pm 1$ which are both cubes. So

$$y + \sqrt{-2} = \beta^3 = (a + b\sqrt{-2})^3$$

$$= a^3 + 3a^2b\sqrt{-2} - 6ab^2 - 2b^3\sqrt{-2}$$

$$= (a^3 - 6ab^2) + \sqrt{-2}(3a^2b - 2b^3)$$

$$y - \sqrt{-2} = (a^3 - 6ab^2) - \sqrt{-2}(3a^2b - 2b^3).$$

Subtract both sides

$$2\sqrt{-2} = 2\sqrt{-2}(3a^2b - 2b^3)$$
$$1 = 3a^2b - 2b^3 = b(3a^2 - 2b^2)$$
$$b = \pm 1$$

Then you can find a, deduce y which then gives x.

27 Gauss's Lemma

Proposition 27.1. In a UFD, any irreducibles are primes.

Proof. Follows from observation that $q_1 \mid rt \implies q_1 = up_j$ or $q_1 = vr_l, u, v \in \mathbb{R}^*$ by unique factorisation. Therefore $q_1 \mid p_j \mid r$ or $q_1 \mid r_l \mid t$.

Definition 27.2 (Primitive Polynomials). $f \in R[x], f \neq 0$ is primitive if the gcd of its coefficients is 1.

Example 27.3. $3x^2 + 2 \in \mathbb{Z}[x]$ is primitive, but $6x^2 + 4$ is not.

Proposition 27.4. Let R be a UFD and K = K(R).

- i) if $f \in K[x], f \neq 0$, then there exists $\alpha \in K^*$ such that $\alpha f \in R[x]$ and αf primitive
- ii) if $f \in R[x], f \neq 0$ is primitive, and $\alpha \in K^*$ such that $\alpha f \in R[x]$ then $\alpha \in R$.

Proof.

- i) Choose d= common denominator, then $df\in R[x]$. Now choose $e=\gcd(\text{coefficients of }df)\in R$. Then $\frac{df}{e}\in R[x]$ and primitive so take $\alpha=\frac{d}{e}$.
- ii) Let $\alpha = \frac{n}{d}$ with $n \in R, d \in R, d \neq 0$. Then gcd(coefficients of nf) = $n \gcd$ (coefficients of f) = $n \times 1 = n = d \gcd$ (coefficients of $(\frac{b}{d})f$) = $d \gcd$ (coefficients of αf) $\Longrightarrow n = \text{multiple of } d \Longrightarrow \alpha \in R$.

Lemma 27.5 (Gauss's Lemma). Let R be a UFD and $f = f_0 + \cdots + f_m x^m, g = g_0 + \cdots + g_n x^n \in R[x]$ be primitive polynomials. Then fg is primitive.

Proof. We need to show that for any prime p, p does not divide all coefficients of fg. Consider $\bar{f} = \text{image of } f$ in (R/p)[x] and similarly for \bar{g} where R/p is a domain. Neither \bar{f} nor \bar{g} are 0 as they are primitive so $\bar{f}\bar{g} = \bar{f}g$ is not the zero polynomial.

Corollary 27.6. Let R be a UFD and K = K(R). Let $f \in R[x]$, assume f = gh with $g, h \in K[x]$. Then $f = \bar{g}\bar{h}$ where $\bar{g}, \bar{h} \in R[x]$ and $\bar{g} = \alpha g, \bar{h} = \beta h$ where $\alpha, \beta \in K^*$.

Proof. Write $g = \gamma g', h = \delta h'$ where $\gamma, \delta \in K^*$ and $g', h' \in R[x]$ with both g', h' primitive. Then $f = \gamma \delta g' h'$ then by Gauss' lemma, g'h' is primitive. So $\gamma \delta \in R$ then take $\bar{g} = \gamma \delta g', \bar{h} = h'$.

Theorem 27.7. Let R be a UFD and K = K(R)

- i) the primes in R[x] are either primes in R or primitive polynomials of positive degree that are irreducible in K[x]
- ii) R[x] is a UFD.

Corollary 27.8. Let R be a UFD, then $R[x_1, x_2, ..., x_n]$ is also a UFD.

Part III

Field Theory

28 Field Extensions

Definition 28.1 (Field Extensions). If F is a subfield of E. We say E is an extension of F, or we say that E/F is a field extension.

Definition 28.2 (Generators of Field Extensions). Let E/F be a field extension, and let $\alpha_1, \ldots, \alpha_n \in E$. Denote $F(\alpha_1, \ldots, \alpha_n)$ the subfield of E generated by $F, \alpha_1, \ldots, \alpha_n$. This is called the subfield generated by $\alpha_1, \ldots, \alpha_n$ over F. If E is of the form $E = F(\alpha_1, \ldots, \alpha_n)$, we say that E/F is a finitely generated extension.

Example 28.3.
$$\mathbb{Q}(i) \subseteq \mathbb{C}$$
, $\mathbb{Q}(i) = \{a+ib: a,b\in\mathbb{Q}\} = \mathbb{Q}[i]$. Also, $\mathbb{Q}(\pi) \subseteq \mathbb{R}$, $\mathbb{Q}(\pi) = \left\{\frac{f(\pi)}{g(\pi)}: fg\in\mathbb{Q}[x], g\neq 0\right\} \neq \mathbb{Q}[x]$.

Let E/F be a field extension and $\alpha \in E^{\times}$. Recall the evaluation homomorphism, $\epsilon : F[x] \to E; p \mapsto p(\alpha)$ and $\operatorname{Im} \epsilon = F[\alpha] \subseteq E$.

Theorem - Definition 28.4 (Transcendental and Algebraic). There are two possibilities:

- i) $\ker \epsilon = 0$. (ϵ is injective). i.e. α is not a root of any nonzero polynomial in F[x]. We say that α is transcendental over F. Hence, $F[\alpha] \cong F[x]$.
- ii) $\ker \epsilon \neq 0 = \langle p \rangle$ where p is monic of minimal degree. Then $F[\alpha] \cong F[x]/\langle p \rangle$. We say that α is algebraic over F and p(x) is called the minimal polynomial of α over F. We say that E/F is algebraic if every $\alpha \in E$ is algebraic over F.

Example 28.5. i) $\sqrt{2} = 1.414 \dots \in \mathbb{R}$. Minimal polynomial of $\sqrt{2}$:

- over $\mathbb{Q}: x^2 2$
- over $\mathbb{R}: x \sqrt{2}$
- ii) In $\mathbb{R}(x)/\mathbb{R}$, the element x is transcendental over \mathbb{R} . $\epsilon: \mathbb{R}[x] \to \mathbb{R}(t); x \mapsto t$.
- iii) \mathbb{R}/R is algebraic. Let $z = a + ib \in \mathbb{C}$. $(z a)^2 + b^2 = 0$ then $p(x) = (x a)^2b^2 = x^2 2ax + (a^2 + b^2) \in R[x], p(z) = 0$.

Proposition 28.6. If $\alpha \in E$ is algebraic over F, then its minimal polynomial in F[x] is irreducible.

Proposition 28.7. Let $F(\alpha)$ be a simple extension.

- i) If α is transcendental over F, then $F(\alpha) \cong F(x)$ (field of rational functions in 1 variable)
- ii) If α is algebraic over F, then $F(\alpha) = F[\alpha] \cong F[x]/\langle p \rangle$ where p is the minimal polynomial.

Proof.

- i) Know $F[\alpha] \cong F[x]$, take fraction fields gives $F(\alpha) \cong K(F[x]) \cong F(x)$.
- ii) Know $F[\alpha] \cong F[x]/\langle p \rangle$. $\langle p \rangle$ is maximal because p is irreducible hence $F[x]/\langle p \rangle$ is a field. Therefore since $F[\alpha]$ is already a field, so $F(\alpha) = F[\alpha]$.

Example 28.8. • $\mathbb{Q}(i) = \mathbb{Q}[i] \cong \mathbb{Q}[x]/\langle x^2 + 1 \rangle$

• Let $f(x) = x^3 + x^2 - 1 \in \mathbb{Q}[x]$ which is irreducible. Let α be a root of f. Consider $\mathbb{Q}[\alpha] = \{r + s\alpha + t\alpha^2 : r, s, t \in \mathbb{Q}\}$. E.g. try $\beta = \alpha^2 + 1 \in \mathbb{Q}[\alpha]$. Apply Euclidean algorithm to f(x) and $g(x) = x^2 + 1$ which gives $\frac{1}{5}(x-2)f(x) + \frac{1}{5}(-x^2 + x + 3)g(x) = 1$ in $\mathbb{Q}[x]$. Substituting $x = \alpha$: $0 + \frac{1}{5}(-\alpha^2 + \alpha + 3)\beta = 1$. So $\beta^{-1} = \frac{1}{5}(-\alpha^2 + \alpha + 3) \in \mathbb{Q}[\alpha]$. This kind of calculation shows that $\mathbb{Q}(\alpha) = \mathbb{Q}[\alpha]$. i.e. $\mathbb{Q}[\alpha]$ is a field.

Definition 28.9 (Degree). Let E/F be a field extension. Then E is a vector space over F. The degree of E/F is $[E:F]=\dim_F E$. We say E/F is a finite extension if $[E:F]<\infty$.

Example 28.10. $[\mathbb{C} : \mathbb{R}] = 2$, $[\mathbb{R} : \mathbb{Q}] = \text{uncountable } \infty$.

Proposition 28.11. Any finite extension is algebraic.

Proof. Let E/F be finite, say dim $n \ge 1$. Let $\alpha \in E$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ must be linearly dependent over F. i.e. there exists $c_0, \ldots, c_n \in F$ not all 0 such that $c_0 + c_1\alpha + \cdots + c_n\alpha^n = 0$. i.e. $p(\alpha) = 0$ where $p(x) = c_0 + c_1x + \cdots + c_nx^n \in F[x]$. So α is algebric over F.

Theorem 28.12 (The Tower Law). Let K/E and E/F be finite. Then K/F is finite and [K:F] = [K:E][E:F].

Proposition 28.13. Suppose $\alpha \in E$ is algebraic over F. Then $[F(\alpha) : F] = \deg p$ where p is a minimal polynomial of α over F.

Example 28.14. $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(2^{1/4})$. What is $[\mathbb{Q}(2^{1/4}) : \mathbb{Q}]$?

- $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$ because minimal polynomial of $\sqrt{2}/\mathbb{Q}$ is x^2-2 has degree 2.
- $[\mathbb{Q}(2^{1/4}):\mathbb{Q}(\sqrt{2})] = 2$ because minimal polynomial of $2^{1/4}$ over $\mathbb{Q}(\sqrt{2})$ is $x^2 \sqrt{2}$.

Then by the tower law, $[\mathbb{Q}(2^{1/4}):\mathbb{Q}] = [\mathbb{Q}(2^{1/4}):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2 \cdot 2 = 4.$

Theorem 28.15 (Eisenstein's Criterion). Let R be a UFD, K = K(R). Let $f = f_0 + f_1 x + \cdots + f_n x^n \in R[x]$. Suppose there exists a prime $p \in R$ such that $p \mid f_0, \ldots, p \mid f_{n-1}$ but $p \nmid f_n$ and $p^2 \nmid f_0$. Then f is irreducible in K[x].

Theorem 28.16 (Splitting Fields). Let F be a field, $f \in F[x]$, $f \neq 0$. Then there exists a field extension E/F such that f(x) is a product of linear factors in E[x], i.e. $f(x) = c(x-\alpha_1)\cdots(x-\alpha_n)$ for $\alpha_1,\ldots,\alpha_n \in E$. The subfield $F(\alpha_1,\ldots,\alpha_n)$ generated by F and the α 's is called a splitting field for f(x) over F.

Proof. Induction on $n = \deg f$. For n = 1, just take E = F. Suppose n > 1, let $p \in F[x]$ be an irreducible factor of f. Let $K = F[x]/\langle p \rangle$. Then K is a field (since p is irreducible), K contains a root of p namely $\alpha = x + \langle p \rangle \in K$. Also F is a subfield of K. In K[x] we have $f(x) = (x - \alpha)g(x)$ for $g \in K[x]$, $\deg g < \deg f$. By induction, there is an extension E of K such that g factors into linear

factors in E[x]. So does f.

Example 28.17. Splitting field of $x^3 - 2$ over \mathbb{Q} .

We already know in \mathbb{C} : $x^3 - 2 = (x - 2^{1/3})(x - 2^{1/3}\omega)(x - 2^{1/3}\omega^2)$ where $\omega = e^{2\pi i/3}$ so splitting field is $\mathbb{Q}(2^{1/3}, \omega)$.

 x^3-2 is irreducible in $\mathbb{Q}[x]$ by Eisenstein's Criterion. Let $K=\mathbb{Q}[x]/\langle x^3-2\rangle$ and $\alpha=x+\langle x^3-2\rangle\in K$. So $\alpha^3=(x+\langle x^3-2\rangle)^3=x^3+\langle x^3-2\rangle=x^3-2+2+\langle x^3-2\rangle=2+\langle x^3-2\rangle=2$. Then $x^3-2=(x-\alpha)(x^2+\alpha x+\alpha^2)$ in K[x].

Q: is $x^2 + \alpha x + \alpha^2$ irreducible in K[x].

Proof. Suppose not. Say β is a root in K. i.e. $\beta^2 + \alpha\beta + \alpha^2 = 0$. Let $\omega = \beta/\alpha$. Then $\omega^2 + \omega + 1 = 0$, but $x^2 + x + 1$ is irreducible over \mathbb{Q} . Thus $[\mathbb{Q}(\omega) : \mathbb{Q}] = 2$ but $\omega \in K$ and $[K : \mathbb{Q}] = 3(= \deg(x^3 - 2))$ but this is a contradiction by the Tower Law, $[K : \mathbb{Q}] = [K : \mathbb{Q}(\omega)][\mathbb{Q}(\omega) : \mathbb{Q}]$.

Now define $E = K[x]/\langle x^2 + \alpha x + \alpha^2 \rangle$, then E is a field. Let $\beta = x + \langle x^2 + \alpha x + \alpha^2 \rangle$. so $\beta \in E$ is a root of $x^2 + \alpha x + \alpha^2$ get $x^-3 = (x - \alpha)(x - \beta)(x - \alpha^2/\beta) = (x - \alpha)(x - \omega)(x - \omega^2\alpha)$ with $\omega = \beta/\alpha$.

Proposition - Definition 28.18 (Algebraically Closed). A field F is algebraically closed if one of the following equivalent conditions hold:

- i) Any non-constant $p \in F[x]$ has a root in F.
- ii) There are no non-trivial algebraic extensions of F.

Theorem 28.19. Let F be a field. There exists a "smallest" extension F/F which is algebraically closed, called the algebraic closure of F. It is unique up to isomorphism.

29 Finite Fields

Definition 29.1 (Characteristic of a Ring). Let R be a ring. Consider the homomorphism $\phi : \mathbb{Z} \to R$; $n \mapsto 1 + 1 + \cdots + 1(n \text{ times})$. Then $\ker \phi \subseteq \mathbb{Z} = \langle n \rangle$ for some n. This is called the characteristic of R, char R.

Example 29.2. char $\mathbb{R} = 0$, char $\mathbb{Z} = 0$, char $(\mathbb{Z}/n\mathbb{Z}) = n$.

Definition 29.3. A finite field is a field with only finitely many elements.

Example 29.4. $\mathbb{Z}/p\mathbb{Z}$ if p is prime is a finite field.

Proposition 29.5. Let F be a finite field. Then $|F| = p^n$ for some prime p, integer $n \ge 1$. p is the characteristic of F. F contains $\mathbb{Z}/a/bZ$ as a subfield.

Proof. Let $n = \operatorname{char} F$. Since F finite, $n \neq 0$.

Claim. n is prime.

Proof. If $n = n_1 n_2$ then $0 = \phi(n) = \phi(n_1)(n_2)$. Since F is a field, either $\phi(n_1) = 0$ or $\phi(n_2) = 0$.

Call p = n. Im $(\phi) = \{0, 1, 1+1, \dots, p-1\}$. By First Isomorphism Theorem, Im $\phi \cong \mathbb{Z}/\ker \phi = \mathbb{Z}/p\mathbb{Z}$. i.e. F contains $\mathbb{Z}/p\mathbb{Z}$ as a subfield. Also F is a vector space over $\mathbb{Z}/p\mathbb{Z}$ of finite dimension say t, so $|F| = p^t$, i.e. can write elements uniquely in form $c_1b_+ \cdots + c_nb_n$ where $c_i \in \mathbb{Z}/p\mathbb{Z}$ and b_i forms a basis for F over $\mathbb{Z}/p\mathbb{Z}$.

Theorem 29.6 (Existence of Finite Fields). Let $p \ge 2$ be a prime, let $n \ge 1$. Then there exists a field F with $|F| = p^n$.

Proof. Let $q = p^n$. Let $g(x) = x^q - x \in \mathbb{F}_p[x]$. From the previous chapter, there eixsts a field extension E/\mathbb{F}_p such that g(x) splits into linear factors in E[x]. Define $F = \{\alpha \in E : g(\alpha) = 0\} = \{\alpha \in E : \alpha^q = \alpha\}$. Know $|F| \leq q$, since g(x) has at most q roots.

Claim. g(x) has no repeated roots.

Proof. If $g(x) = (x - a)^2 h(x)$ for some $\alpha \in E, h \in E[x]$. Then $g'(x) = 2(x - \alpha)h(x) + (x - \alpha)2h(x)$. So $g'(\alpha) = 0$. But $g'(x) = qx^{q-1} - 1 = -1$, contradiction.

Therefore |F|=q. Need to show F is a subfield of E. If $\alpha,\beta\in F$ then $(\alpha\beta)^q=\alpha^q\beta^q=\alpha\beta$ so $\alpha\beta\in F$.

$$(\alpha + \beta)^p = \alpha^p + \beta^p$$
$$(\alpha + \beta)^{p^2} = \alpha^{p^2} + \beta^{p^2}$$
$$\vdots$$
$$(\alpha + \beta)^q = \alpha^q + \beta^q = \alpha + \beta$$

so $\alpha + \beta \in F$ and closed under addition and multiplication. Inverses $\alpha^{-1} = \alpha^{q-2}$ because $\alpha^{q-1} = 1$ if $\alpha \neq 0$.

Theorem 29.7 (Existence of Generators). Let F = finite field order $q = p^n$. Then F^* is cyclic of order q - 1.

Example 29.8.
$$\mathbb{F}_4 = \mathbb{F}_2(\alpha)$$
 with $\alpha^2 + \alpha + 1 = 0$. We have $\alpha^0 = 1, \alpha^1 = \alpha, \alpha^2 = \alpha + 1$ so $\mathbb{F}_4^* = \langle \alpha \rangle$.

Lemma 29.9. Let $m \in \mathbb{F}_p[x]$ be irreducible with deg $n \geq 1$. Let $q = p^n$ then $m \mid x^q - x$.

Theorem 29.10. Let F, F' be finite fields. |F| = |F'| then $F \cong F'$.

30 Ruler and Compass Constructions

Definition 30.1 (Admissible Towers). Let $F = \mathbb{Q}(S_0) = \mathbb{Q}(\text{ all } x, y \text{ coordinates of points in } S_0)$ (= \mathbb{Q} for some S_0). An admissible tower is a tower of extensions: $F = E_0 \subseteq E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n$ where $E_j \subseteq \mathbb{R}$, $[E_j : E_{j-1}] = 2$ for all j.

Theorem 30.2. Let $(x,y) \in S_i$. Then there exists an admissible tower $E_0 \subseteq \cdots \subseteq E_n$ such that $x,y \in E_n$.

Lemma 30.3. If $F_0 \subseteq \cdots F_n$ and $E_0 \subseteq \cdots E_n$ are admissible then there exists admissible $K_0 \subseteq \cdots \subseteq K_r$ such that $F_n \subseteq K_r$ and $E_m \subseteq K_r$.

Corollary 30.4. Let $(x,y) \in \mathbb{R}^2$ be constructible from S_0 . Then $[F(x,y):F]=2^k$ for some k.