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Part I

Group Theory

1 The Mathematical Language of Symmetry

Definition 1.1 (Isometry). A function f : Rn → Rn is an isometry if ‖f(x)− f(y)‖ = ‖x− y‖ for all x, y ∈
Rn. i.e. preserves distances.

Definition 1.2 (Symmetry). Let F ⊆ Rn, a symmetry of F is a (surjective) isometry T : Rn → Rn such
that T (F ) = F .

Properties 1.3. Let S, T be symmetries of F ⊆ Rn. Then S · T : Rn → Rn is also a symmetry of F .

Proof. Given x, y ∈ Rn.

‖STx− STy‖ = ‖Tx− Ty‖ (S is an isometry)

= ‖x− y‖. (T is an isometry)

Therefore ST is an isometry. Clearly ST is surjective as both S and T are surjective. Also,

ST (F ) = S(F ) (T (F ) = F )

= F. (S(F ) = F )

So ST is a symmetry of F .

Properties 1.4. If G = set of symmetries of F ⊆ Rn, then G satisfies:

i) Composition is associative, ST (R) = S(TR) for all S, T,R ∈ G.

ii) idRn ∈ G (idRn(x) = x for all x ∈ Rn). Also, idG T = T and T idG = T for all T ∈ G.

iii) If T ∈ G, then T is bijective and T−1 ∈ G.

Proof. If Tx = Ty, then ‖Tx− Ty‖ = 0. So ‖x− y‖ = 0, x = y, therefore T is injective.
By definition T is surjective, hence, T is bijective and therefore T−1 is surjective.

To prove T−1 is an isometry.∥∥T−1x− T−1y∥∥ =
∥∥TT−1x− TT−1y∥∥

= ‖idx− id y‖
= ‖x− y‖.

To prove symmetry, T−1F = F :

T−1F = T−1(T (F )) = F.

Thus T−1 ∈ G.
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Definition 1.5 (Group). A group is a set G equipped with a “multiplication map” µ : G×G→ G such
that

1) Associativity: (gh)k = g(hk) for all g, h, j ∈ G.

2) Existence of identity: There exists 1 ∈ G such that 1g = g and g1 = g for all g ∈ G.

3) Existence of inverses: ∀g ∈ G, there exists h ∈ G such that gh = 1 and hg = 1. Denoted by g−1.

Properties 1.6. Basic facts about groups.

• “Generalised Associativity”. When multiplying three or more elements, the bracketing does not
matter. E.g. (a(b(cd)))e = (ab)(c(de)).

Proof. Mathematical Induction as for matrix multiplication.

• Cancellation Law. If gh = gk then h = k for all g, h, k ∈ G.

Proof. gh = gk =⇒ g−1(gh) = g−1(gk) =⇒ (g−1g)h = (g−1g)k =⇒ 1h = 1k =⇒ h = k.

2 Matrix Groups and Subgroups

Recall GLn(R) and GLn(C) which represent the set of real/complex invertible n× n matrices.

Proposition 2.1. GLn(R) and GLn(C) are groups when endowed with matrix multiplication.

Proof. Product of real invertible matrices is in GLn(R).

i) matrix multiplication is associative.

ii) identity matrix In : Inm = m and mIn = m for all m ∈ GLn(R)

iii) if m ∈ GLn(R) then m−1. mm−1 = I and m−1m = I.

Proposition 2.2. Let G = group.

1) Identity is unique i.e. suppose 1, e are both identities then 1 = e.

Proof. 1 = 1 · e = e.

2) Inverses are unique.

Proof. If g ∈ G, gh = hg = 1 and gk = kg = 1 then h = k.

3) For g, h ∈ G we have (gh)−1 = h−1g−1.

Proof. (gh)(h−1g−1) = ghh−1g−1 = g1g−1 = gg−1 = 1. Similarly, (h−1g−1(gh) = 1).

Definition 2.3 (Subgroup). Let G be a group with multiplication µ. A subset H ⊆ G is called a subgroup
of G (denoted H ≤ G) if it satisfies:
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i) 1G ∈ H (contains identity),

ii) if g, h ∈ H then gh ∈ H (closed under multiplication),

iii) if g ∈ H then g−1 ∈ H (closed under inverse).

Proposition 2.4. H is a group with the induced multiplication map µH : H × H → H by µH(g, h) =
µ(g, h).

Proof. (ii) tells us that µH makes sense. µH is associative because µ is. H has an identity from
(i). H has inverses from (iii).

Proposition 2.5. Set of orthogonal matrices On(R) = {M ∈ GLn(R) : MT = M−1} ≤ GLn(R) forms a
group. Namely the set of symmetries of an n− 1 sphere, i.e. an n dimensional circle.

Proof. Check axioms.

i) In ∈ On(R)

ii) If M,N ∈ On(R) then (MN)T = NTMT = N−1M−1 = (MN)−1, so MN ∈ On(R).

iii) If M ∈ On(R) then (M−1)T = (MT )−1 = (M−1)−1 so M−1 ∈ On(R).

Proposition 2.6. Basic subgroup facts.

i) Any group G has two trivial subgroups: itself and 1 = {1G}.

ii) If J ≤ H and H ≤ G then J ≤ G.

Here are some notations. For g ∈ G where G is a group.

i) If n positive integer, define gn = g · g · · · g (n times)

ii) g0 = 1

iii) n positive: g−n = (g−1)n or (gn)−1.

iv) For m,n ∈ Z, gm · gn = gm+n and (gm)n = gmn.

Definition 2.7. The order of a group G, denoted |G| is the cardinality of G. For g ∈ G, the order of g is
the smallest positive integer n such that gn = 1. If no such integer exists, order is ∞.

3 Permutation Groups

Definition 3.1 (Permutations). Let S be a set. Let Perm(S) be the set of permutations of S. This is the
set of bijections of form σ : S → S.

Proposition 3.2. Perm(S) is a group when endowed with composition of functions.

Proof. Composition of bijections is a bijection. The identity is idS and group inverse is the inverse
function.

Definition 3.3 (Symmetric Group). Let S = {1, . . . , n}. The symmetric group Sn is Perm(S).
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Two notations are used. With the two line notation, represent σ ∈ Sn by(
1 2 3 · · · n

σ(1) σ(2) σ(3) · · · σ(n)

)
(σ(i)’s are all distinct, hence σ is one to one and bijective). Note this shows |Sn| = n!.

With the cyclic notation, let s1, s2, . . . , sk ∈ S be distinct. We define a new permutation σ ∈ Perm(S) by
σ(si) = si+1 for i = 1, 2, . . . , k−1, σ(sk) = σ(s1) and σ(s) = s for s /∈ {s1, s2, . . . , sk}. Denoted (s1s2 . . . sk)
and called a k-cycle.

Example 3.4. For n = 4,

σ =

(
1 2 3 4
2 3 1 4

)
∈ S4 means

σ(1) = 2, σ(2) = 3
σ(3) = 1, σ(4) = 4.

In cyclic notation this is (123)(4) or (123) where the cycle is 1→ 2→ 3→ 1.

Note that a 1-cycle is the identity and the order of a k-cycle is k. So σk = 1 and σ−1 = σk−1.

Definition 3.5 (Disjoint Cycles). Cycles s1 . . . sk and t1 . . . tk are disjoint if {s1, . . . , sk}∪{t1, . . . , tk} = ∅.

Definition 3.6 (Commuativity). In any group, two elements g, h commute if gh = hg.

Proposition 3.7. Disjoint cycles commute.

Proposition 3.8. Any permutation σ of a finite set S is a product of disjoint cycles.

Example 3.9. σ =

(
1 2 3 4 5 6
2 4 6 1 5 3

)
∈ S6 does 1→ 2→ 4→ 1, 3→ 6→ 3 and 5→ 5.

Thus σ = (124)(36) since (5) is the identity.

Proposition 3.10. Let σ be a permutation of a finite set S. Then S is a disjoint union of subsets, say
S1, . . . , Sr, such that σ permutes the elements of each Si cyclically.

Definition 3.11 (Transposition). A transposition is a 2−cycle i.e. (ab).

Proposition 3.12. i) The k-cycle (s1s2 . . . sk) = (s1sk)(s1sk−1) . . . (s1s3)(s1s2)

Example 3.13. (3625) = (35)(32)(36) = (36)(62)(25)

Proof. The RHS produces the mapping below which is equivalent to the LHS.

s1 → s2

s2 → s1 → s3

s3 → s1 → s4
...

sk−1 → s1 → sk

sk → s1.

ii) Any permutations in Sn is a product of transpositions.
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Proof. We can write any σ ∈ Sn as product of (disjoint) cycles. By part i), each cycle is a
product of transpositions. So we can write σ as product of transpositions.

4 Generators and Dihedral Groups

Lemma 4.1. Let {Hi}i∈I be a (non-empty) collection of subgroups of G. Then
⋂
i∈I Hi ≤ G.

Proof.

1) Why is 1 ∈
⋂
i∈I Hi? Because 1 ∈ Hi for all i.

2) Closed under multiplication? If g, h ∈
⋂
i∈I Hi, then g, h ∈ Hi for all i =⇒ gh ∈

Hi for all i =⇒ gh ∈i∈I Hi.

3) Closed under taking inverse? If g ∈
⋂
i∈I Hi then g ∈ Hi for all i as Hi are subgroups, every

element has an inverse. So an inverse exists for all elements in Hi for all i.

Proposition - Definition 4.2. Let G be a group and S ⊆ G. Let J be the set of subgroups J ≤ G
containing S.

i) [Definition] The subgroup generated by S, 〈S〉 is
⋂
J ∈ J ≤ J ≤ G. i.e. it’s the intersection of all

subgroups of G containing S.

Proof. Lemma 4.1 implies 〈S〉 is a subgroup of G.

ii) [Proposition] 〈S〉 is the set of elements of the form g = s1s2 . . . sn where n ≥ 0 and si ∈ S ∪ S−1.
Define g = 1 when n = 0.

Proof. Let H = {s1 . . . sn : si ∈ S ∪ S−1}. First, H ⊆ 〈S〉. Need to prove that si · · · sn ∈
every J . Each si ∈ J because si = s or s−1 for some s ∈ S ≤ J and J closed under inversion.
Therefore, s1 . . . sn ∈ J by closure under multiplication. Hence s1 . . . sn ∈

⋂
J∈J J = 〈S〉.

Second, 〈S〉 ⊆ H. Need to prove H is a subgroup containing S. Closure under multiplication:
(s1 . . . sn)(t1 . . . tm) = s1 . . . snt1 . . . tm also closure under inversion: (s1 . . . sn)−1 = s−11 . . . s−1n ∈
H since s−1i ∈ S for all i. Identity: s, s−1 ∈ S 6= ∅ =⇒ ss−1 = 1 ∈ H.

Definition 4.3 (Finitely Generated). A group G is finitely generated f.g. if G = 〈S〉 for a finite subset
S ⊆ G. G is cyclie if we can take |S| = 1.

Example 4.4. Take G ∈ GL2(R) with σ =

(
cos
(
2π
n

)
− sin

(
2π
n

)
sin
(
2π
n

)
− cos

(
2π
n

)) and τ =

(
1 0
0 −1

)
. Find the

subgroup generated by {σ, τ}.

Notice both σ, τ are symmetries of any n-gon. Any element of 〈σ, τ〉 has form

σi1τ j1σi2τ j2 . . . σirτ jr for i1, . . . , ir, j1, . . . , jr ∈ Z.

We have relations: σn = 1, τ 2 = 1 and τστ−1 = σ−1. We use these relations to push all σ’s to the
left and all τ ’s to the right to achieve the form σiτ j where 0 ≤ i < n and j = 0, 1.
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Proposition - Definition 4.5. 〈σ, τ〉 = dihedral group of 2n, denoted Dn (sometimes D2n).

Dn = {1, σ, . . . , σn−1, τ, στ, σ2τ, . . . , σn−1τ} and |Dn| = 2n.

Proof. Need to show 2n elements are all distinct. det(σi) = 1 (because det(σ) = 1), det(τ) =
−1 and det(σiτ) = −1. We conclude, {1, σ, . . . , σn−1} ∩ {τ, στ, . . . , σn−1τ} = ∅ because σk =(

cos
(
2kπ
n

)
− sin

(
2kπ
n

)
sin
(
2kπ
n

)
cos
(
2kπ
n

) ) are distinct. If σiτ = σjτ then σi = σj then i = j.

5 Alternating and Abelian Groups

Definition 5.1 (Symmetric Functions). Let f(x1, . . . , xn) be a function of n variables. Let σ ∈ Sn. We
define function (σf)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). We say that f is symmetric if σf = f for all σ ∈ Sn.

Example 5.2. Suppose f(x1, x2, x3) = x31x
2
2x3 and σ = (12) then σf(x1, x2, x3) = x32, x

2
1x3. Not

symmetric because x31x
2
2x3 6= x32x

2
1x3. But f(x1, x2) = x21x

2
2 is symmetric in two variables.

Definition 5.3 (Difference Product). The difference product in (n variables) is

∆(x1, . . . , xn) = Πi<j(xi − xj).

Lemma 5.4. Let f(x1, . . . , xn) be a function in n variables. Let σ, τ ∈ Sn, then (στ) · f = σ · (τf).

Proof.

(σ · (τf))(x1, . . . , xn) = (τf)(xσ(1), . . . , xσ(n)) (by definition)

= f(yτ(1), . . . , yτ(n)) (where yi = xσ(i))

= f(xσ(τ(1)), . . . , xσ(τ(n)))

= f(x(στ)(1), . . . , x(στ)(n))

= ((στ) · f)(x1, . . . , xn).

Note, the second and third step follows because xσ(1) is not necessarily x1, so τ is applied to x1 first,
then σ can be applied.

Proposition - Definition 5.5. For σ ∈ Sn write σ = τ1τ2 . . . τm where τi are transpositions. Then

σ ·∆ =

{
∆ if m even (call σ an even permutation)

−∆ if m odd (call σ an odd permutation)

Proof. Sufficent to prove for a single transposition (i.e. m = 1) because by the above Lemma,

σ∆ = τ1(τ2 . . . (τm−1(τm∆)) . . . ) = τ1((−1)m−1∆) = (−1)m∆.

Let’s assume σ = (ij), i < j. There are 3 cases:

i) xi − xj =⇒ xj − xi (factor of -1).

ii) xr − xs where i, j, r, s all distinct =⇒ xr − xs (factor of +1).
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iii) xr − xs where one of r, s is equal to i or j. There are several subcases:

(a) r < i < j: xr − xi =⇒ xr − xj but also xr − xj =⇒ xr − xi, no change (factor of +1).

(b) i < r < j: (xi − xr)(xr − xj) =⇒ (xj − xr)(xr − xi) (factor of +1).

(c) i < j < r: similar to (a) (factor of +1).

So only change in i). Multiplying the three cases together yields σ ·∆ = −∆.

Corollary - Definition 5.6 (Alternating Group). The alternating group (on n symbols) is

An = {σ ∈ Sn : σ is even}.

This is a subgroup of Sn. Also An is generated by {τ1τ2 : τ1, τ2 are transposition}.

Example 5.7. A3 = {1, (123), (132)}, S3\A3 = {(12), (13), (23)}.|An| = n!/2 except for n = 1, A1 =
S1 = {1}.

Definition 5.8 (Abelian Group). A group G is abelian if any two elements commute.

In abelian groups, often switch to additive notation:

i) product gh =⇒ g + h

ii) identity 1 =⇒ 0

iii) power gn =⇒ ng

iv) inverse g−1 =⇒ −g

This notation follows from Z endowed with addition which forms an abelian group.

6 Cosets and Lagrange’s Theorem

Let H ≤ G be a subgroup. This will apply to all statements in this section unless mentioned otherwise.

Definition 6.1 (Coset). A left coset of H in G is a set of the form gH = {gh : h ∈ H} ⊆ G for some
g ∈ G. The set of left cosets is denoted byt G/H.

Example 6.2. Let H = An ≤ Sn = G for n ≥ 2. Let τ be any transposition. We claim that τAn =
{odd permutations}.

⊆ : τAn = {τσ : σ even}, they are all odd.

⊇ : Suppose σ is odd, then σ = τ · (τ−1σ) ∈ τAn.

Theorem 6.3. Define a relation on G : g ≡ g′ if and only if g ∈ g′H. Then ≡ is an equivalence relation,
the equivalence classes are the left cosets. Therefore G =

⋃̇
i∈IgiH (disjoint union).

Proof.

i) Reflexive. i.e. g ∈ gH for all g ∈ G. True because 1 ∈ H.
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ii) Symmetry. Suppose g ∈ g′H, need to prove g′ ∈ gH. Since g ∈ g′H we have g = g′H for some
h ∈ H. g′ = gh−1 so g′ ∈ gH (as h−1 ∈ H).

iii) Transitivity. Suppose g ∈ g′H and g′ ∈ g′′H. Then g = g′h and g′ = g′′h′ for h, h′ ∈ H.
Therefore g = (g′′h)h = g′′(h′h) ∈ g′′H from associativity and h′h ∈ H.

Thus ≡ is an equivalence relation and G is a disjoint union of equivalence classes.

Note 1H = H is always a coset of G and the coset containing g ∈ G is gH.

Example 6.4. H = An ≤ Sn = G cosets are exactly Sn and τSn where Sn = An
⋃̇
τAn.

Definition 6.5 (Index). The index of H in G is the number of left cosets, i.e. |G/H|. Denoted by [G : H].

Lemma 6.6. Let g ∈ G. Then H and gH have the same cardinality.

Proof. Bijection, H → gH, h 7→ gh. Surjective and injective (multiply on lefy by g−1).

Theorem 6.7 (Lagrange’s Theorem). Assume G finite. Then |G| = |H|[G : H] i.e. |G/H| = |G|/|H|.

Proof. Using Lemma 6.6, we have:

G =

[G:H]⋃
i=1

giH (disjoint union) =⇒ |G| =
[G:H]∑
i=1

|giH| =
[G:H]∑
i=1

|H| = [G : H]|H|.

Example 6.8. An ≤ Sn. [Sn : An] = 2 =⇒ |Sn| = 2|An| =⇒ n! = 2 ∗ n!/2.

All above statements hold for right cosets which have form Hg = {hg : h ∈ H} denoted H\G. The number
of left cosets are equal the number of right cosets.

7 Normal Subgroups and Quotient Groups

Let G = group and J,K ⊆ G. Define the subset product JK = {jk : j ∈ J, k ∈ K}.

Proposition 7.1. Let G = group.

i) If J ′ ⊆ J ⊆ G and K ⊆ G then KJ ′ ⊆ KJ .

ii) If H ≤ G, then HH = H(= H2).

iii) For J,K, L ⊆ G then (JK)L = J(KL) = {jkl : j ∈ J, k ∈ K, ` ∈ L}

Proposition - Definition 7.2 (Normal Subgroup). Let N ≤ G. We say N is a normal subgroup of G
and write N E G if any of the following equivalent conditions hold:

i) gN = Ng for all g ∈ G.

ii) g−1Ng = N for all g ∈ G.

iii) g−1Ng ⊆ N for all g ∈ G
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Proof. (i) ⇐⇒ (ii), multiply both sides on the left by g−1. (ii) =⇒ (iii) by definition. (iii) =⇒
(ii), assume g−1Ng ⊆ N for all g ∈ G, apply this with g−1 : (g−1)Ng−1 ⊆ N =⇒ N ⊆ g−1Ng.
Therefore g−1Ng = N .

Theorem - Definition 7.3 (Quotient Group). Let N E G. Then subset product is a well-defined
multiplication map on G/N which makes G/N into a group, called the quotient group. Also:

i) (gN)(g′N) = (gg′)N

ii) 1G/N = N

iii) (gN)−1 = g−1N .

Proof. Why is this well-defined? Why is the product of 2 cosets another coset?

Take cosets gN = {g}N and g′N . Calculate

(gN)(g′N) = g(Ng′)N (associative)

= g(g′N)N (N E G)

= (gg′)(NN) (associative)

= gg′N (N2 = N)

This is a coset. Also proves (i). For (ii), (gN)N = g(NN) = gN =⇒ N(gN) = (Ng)N = (gN)N =
gN , N is an identity. For (iii), (g−1N)(gN) = g−1(Ng)N = g−1(gN)N = (g−1g)(NN) = 1 ·N = N .

8 Group Homomorphisms

Definition 8.1 (Homomorphism). Given groups G,H. A function φ : H → G is a homomorphism of
groups if φ(hh′) = φ(h)φ(h′) for all h, h′ ∈ H.

Proposition - Definition 8.2 (Isomorphisms and Automorphisms). Let φ : H → G be a group homo-
morphism. The following are equivalent:

• There exists a group homomorphism, ψ : G→ H such that ψφ = idH and φψ = idG

• φ is bijective.

We call φ is a group isomorphism. If H = G, φ is an automorphism.

Proposition 8.3. If φ : H → G,ψ : K → H are group homomorphism then φ · ψ : K → G is a
homomorphism.

Proof. (φ · ψ)(kk′) = φ(ψ(kk′)) = φ(ψ(k)ψ(k′)) = φ(ψ(k))φ(ψ(k′))

Proposition 8.4. Let φ : H → G be a group homomorphism.

i) φ(1H) = 1G.

ii) φ(h−1) = φ(h)−1 for all h ∈ H.

iii) if H ′ ≤ H then φ(H ′) ≤ G.

Proposition - Definition 8.5. Let G be a group with g ∈ G. Conjugation by g is the map Cg : G →
G;h 7→ ghg−1. Then Cg is an automorphism with inverse Cg−1 .
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Proof. Cg is a homomorphism: Cg(h1h2) = Cg(h1)Cg(h2). Check: Cg(h1h2) = gh1h2g
−1 =

gh1g
−1gh2g

−1 = Cg(h1)Cg(h2). Now check Cg−1 is an inverse. Cg−1(Cg(h)) = Cg−1(ghg−1) =
g−1ghg−1g = h. Similarly Cg(Cg−1)(h) = h, therefore (Cg)

−1 = Cg−1 .

Corollary - Definition 8.6. For H ≤ G, a conjugate of H (in G) is a subgroup of G of the form
gHg−1 := cg(H).

Definition 8.7 (Epimorphism and Monomorphism). Let φ : H → G be a group homomorphism. φ is an
epimorphism if φ is surjective. φ is a monomorphism if φ is injective.

Example 8.8. Linear map T : V → W where V and W are vector spaces. Suppose T is a pro-
jection onto some subspace. What does T−1(w) = {v ∈ V : T (v) = w} looks like, for a given w ∈ W?

If w ∈ L, T−1(w) = ∅
If w ∈ L, T−1(w) = plane containing w, orthogonal to L = w+K where K = kernel of T = T−1(0).

Definition 8.9. Let φ : H → G be a group homomorphism. The kernel of φ is

kerφ = φ−1(1G) = {h ∈ H : φ(h) = 1G}

Proposition 8.10. Let φ : H → G be a group homomorphism.

i) If G′ ≤ G then φ−1(G′) ≤ H.

ii) If G′ E G then φ−1(G′) E H.

Proof. (Normality) Given h ∈ φ−1(G′) andg ∈ H. We need to prove ghg−1 ∈ φ−1(G′) =⇒
φ(ghg−1) ∈ G =⇒ φ(g)φ(h)φ(g)−1 ∈ G true because φ(h) ∈ G′ and G′ E G.

iii) K = kerφ E H.

Proof. Follows from (ii) because K = φ−1({1}) and {1} E G.

iv) The non-empty fibres of φ, i.e. φ−1(g) for all g ∈ G, are exactly the cosets of H.

Proof. Suppose g ∈ G, consider φ−1(g). Assume φ−1(g) 6= φ. Let h ∈ φ−1(g).

Claim. φ−1(g) = hK.
Proof. hK ⊆ φ−1(g) because φ(hK) = φ(h)φ(j) = g · 1 = g.
Converse: φ−1(g) ⊆ hK. Let h′ ∈ φ−1(g). Then φ(h′) = g, also φ(h) = g. Therefore
φ(h′h−1) = φ(gg−1) = φ(1) = 1. So h′h−1 ∈ K,h′ ∈ Kh = hK, thus φ−1(g) = hK.

v) φ is one to one if and only if K = {1}.

Proof. ( =⇒ ) trivial. (⇐= ) Assume K = {1}. By part (iv) fibres φ−1(g) are cosets of {1}
hence contain single element.

Proposition - Definition 8.11. Let N E G. The quotient monomorphism (of G by N) is the map
π : G→ G/N ; g 7→ gN . Its an epimorphism with kernel N .
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9 First Group Isomorphism Theorem

Theorem 9.1. Let N E G and π : G→ G/N be quotient map. Suppose φ : G→ H is a homomorphism
such that N ≤ kerφ.

i) If g, g′ ∈ G lie in the same coset of N , i.e. gN = g′N , then φ(g) = φ(g′).

ii) The map ψ : G/N → H; gN 7→ φ(g) is a homomorphism (the induced homomorphism).

iii) ψ is the unique homomorphism G/N → H such that φ = ψ ◦ π.

iv) kerψ = (kerφ)/N = {gN : g ∈ kerφ}.

Lemma 9.2 (Universal Property of Quotient Morphism). If N E Z then N = mZ for some m ∈ N.

Proof. If N = 0(= {0}) then can take m = 0. Suppose N 6= 0. Must contain at least one nonzero
element. Take m = smallest positive element in N . mZ ⊆ N easy. N ⊆ mZ. Let n ∈ N , we
write n = mq + r where 0 ≤ r < m. We know n ∈ N,mq ∈ N . Therefore r = n − mq ∈ N but
r < m =⇒ r = 0. Thus, n = mq ∈ mZ.

Proposition 9.3. Let H = 〈h〉 be a cyclic group. Then there exists an isomorphism: φ : Z/mZ → H
where m is the order of hif this is finite and 0 if h has infinite order.

Proof. Define φ : Z → H; i 7→ hi. φ is an epimorphism (because hi+j = hi · hjandH = 〈h〉 gives
surjective.) Let N = kerφ. By lemma, N = mZ for some m ≥ 0. Apply Universal Property
Theorem, gives ψ : Z/mZ → H. ψ surjective because φ is surjective. Injective if i + mZ ∈ kerψ,
then φ(i) = 1 ∈ H so i ∈ kerφ = N = mZ. So H ∼= Z/mZ. Check m gives correct order.

Theorem 9.4 (First isomorphism Theorem). Let φ : G → H be a homomorphism. The isomorphism π
given by G→ H induces G/ kerφ→ H (by Universal Property) induces G/ kerφ→ Imφ.

10 Second and Third Isomorphism Theorems

Proposition 10.1 (Subgroups of Quotient Groups). Let N E G and π : G→ G/N be the quotient map.

i) If N ≤ H ≤ G then N E H.

ii) There is a bijection between subgroups H ≤ G that contain N and subgroups H̄ ≤ G/N . H 7→
π(H) = {nH : h ∈ H} = H/N and H̄ ← [ π−1(H̄).

Proof. Images and image images of subgroups are subgroups. If H̄ ≤ G/N , then π−1(H̄)
contains N (because 1G/N ∈ H̄). Surjective: π(π−1(H̄)) = H̄ because π surjective. Injective:
If π(H1) = π(H2) then H1 = H2. This follows from H1 = ∪g∈H1gN (disjoint union of cosets).

iii) Normal subgroups correspond i.e. H E G iff H̄ E G/N .

Theorem 10.2 (Second Isomorphism Theorem). Suppose N E G and N ≤ H E G. Then G/N
H/N
∼= G/H.

Proof. Since πN , πH/N are both onto, φ = πH/N ◦ πN is also onto. ker(φ) = {g ∈ G : πN(g) ∈
ker(πH/N : G/N → G/N

H/N
} = {g ∈ G : πN(g) ∈ H/N} = π−1(H/N) = H by Proposition 10.1. First
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Isomorphism Theorem says G/ ker(φ) ∼= Im(φ) =⇒ G/N ∼= G/N
H/N

which proves the theorem.

Theorem 10.3. Suppose H ≤ G,N E G. Then

i) H ∩N E H, HN ≤ G.

ii) H
H∩N

∼= HN
N

.

11 Products of Groups

Recall given groups G1, . . . , Gn, the set G1 × G2 × . . . Gn = {(g1, . . . , gn) : g1 ∈ G1, . . . gn ∈ Gn}. More
generally if Gi, i ∈ I are groups then

∏
i∈I Gi = {(gi)i∈I : gi ∈ Gi}.

Proposition - Definition 11.1 (Product). The set
∏

i∈I Gi is called the (direct) product of the Gi’s, it
is a group when endowed with co-ordinatewise multiplication. (gi)(g

′
i) = (gig

′
i)

i) 1G = (1Gi
) = (1G1 , 1G2 , 1G3 , . . . )

ii) (gi)
−1 = (g−1i )

Example 11.2. Consider Z2 = Z×Z. (a, b) + (a′, b′) = (a+a′, b+ b′), group law in each coordinate.
Z2 = 〈(1, 0), (0, 1)〉 is finitely generated.

Proposition 11.3 (Canonical Injections and Projections). Let Gi, i ∈ I be groups and r ∈ I.

i) The canonical injection ιr : Gn →
∏

i∈I Gi; g 7→ (gi)i∈I where gi = 1 if i 6= r or gi = g if i = r.

ii) The canonical project πr :
∏

i∈I Gi → Gr; (gi)i∈I 7→ gr.

iii) G1×G2

G1×{1}
∼= G2 (Note: Gn × {1} E G1 ×G2).

Proof. π2 : G1 ×G2 → G2. Apply First Isomorphism Theorem

Proposition 11.4 (Internal Characterisation of Product). LetG1, . . . , Gn ≤ G. AssumeG = 〈G1, . . . , Gn〉.
Assume:

i) If i 6= j then elements of Gi and Gj commute

ii) For any i, Gi ∩ 〈U` 6=iG`〉 = 1.

Then there is an isomorphism φ : G1 × . . . Gn → G; (g1, . . . , gn) 7→ g1g2 · · · gn.

Proof. Check homomorphism:

φ((g1, . . . , gn)(h1, . . . , hn)) = φ((g1h1, . . . gnhn))

= g1h1g2h2 · · · gnhn
= g1 · · · gnh1 · · ·hn (using (i))

= φ(g1 . . . gn)φ(h1 . . . hn)

Surjective? Yes because G is generated by G1, . . . , Gn. Injective? Suppose φ((g1, . . . , gn)) = 1, then
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g1 · · · gn = 1 =⇒ g−11 ∈ G1 = g2 · · · gn ∈ 〈G2 · · ·Gn〉 by (ii) must be id. So g1 = 1 and g2 · · · gn = 1.
Repeat the same argument to get all gi = 1.

Corollary 11.5. Let G = finite group of exponent 2. i.e. LCM of all orders of group element is 2. Then
G ∼= Z/2Z× · · ·Z/2Z.

Proof. G is finitely genereqated. Choose minimal generating set {g1, . . . , gn}, each 〈gi〉 ∼= Z/2Z.
Want to prove that G ∼= 〈g1〉 × . . . 〈gn〉. Condition (i): Need gigj = gjgi for i 6= j. ord(gigj) = 2, so
gigjgigj = 1 =⇒ gigj = g−1j g−1i = gjgi. Condition (ii): e.g. 〈g1〉 ∩ 〈g2, . . . , gn〉 = {1}. If false, then
g1 ∈ 〈g2, . . . , gn〉 but then our generating set is not minimal. By proposition G ∼= 〈g1〉 × · · · × 〈gn〉.

Theorem 11.6. Let G be a finitely generated abelian group. Then G ∼= product of cyclic groups. In fact
G ∼= Z/h1Z× Z/g2Z× · · · × Z/hnZ× Zs where h1 | h2 | h3 | · · · | hn for some n, r ∈ N.

12 Symmetries of Regular Polygons

AOn, the set of surjective symmetries T : Rn → Rn forms a subgroup of Perm(Rn).

Proposition 12.1. Let T ∈ AOn, then T = Tv◦T ′, where v = T (0) and T ′ is an isometry with T ′(0) = 0.

Proof. Set T ′ = T−1v ◦ T = T−v ◦ T where v = T (0). T ′ is an isometry because T and Tv are
isometries. Also T ′(0) = T−v(T (0)) = T−v(v) = v − v = 0.

Theorem 12.2. Let T : Rn → Rn be an isometry such that T (0) = 0. Then T is linear.

The centre of mass V = {v1, . . . ,vm} ⊆ Rn is cV = 1
m

(v1 + · · ·+ vm).

Corollary 12.3. Let V = {v1, . . . ,vm} and let T : Rn → Rn be an isometry such that T (V ) = V . Then
T (cV ) = cV .

Proof. Decomposte T = Tw ◦T ′ for some w ∈ Rn and isometry T ′ with T ′(0) = 0. So T ′ is linear.
Then

T (cV ) = w + T ′(cV ) = w + T ′

(
1

m

∑
i

vi

)
= w +

1

m

∑
i

T ′(vi) (using linearity)

=
1

m

∑
i

(
T ′(vi) + w

)
=

1

m

∑
i

T (vi)

=
1

m

∑
i

vi (since T (v) = v)

= cV

Corollary 12.4. Let G ≤ AOn be finite. Then there exists c ∈ Rn such that Tc = c for any T ∈ G. If
we translate to change coordinates so c = 0, then G < On.
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Proof. Pick any w ∈ Rn and let V = {Sw : S ∈ G} ⊆ Rn. V is finite because G is finite. Also
T (V ) = {TSw : S ∈ G} = {Sw : S ∈ G} = V . Take c = cV then by the previous corollary
T (c) = c for all T ∈ G.

Proposition 12.5 (Symmetries of Regular Polygons). The group of symmetries of a regular n-gon is in
fact Dn.

13 Abstract Symmetry and Group Actions

Definition 13.1 (G-set, Group Action). A G-set is a set S equipped with a map α : G× S → S; (g, s) 7→
α(g, s) = g.s is called a group action and satisfies the following axioms:

i) g.(h.s) = (g.h).s for all g, h ∈ G, s ∈ S.

ii) 1G.s = s for all s ∈ S.

Definition 13.2 (Permutation Representation). A permutation representation of a group G on a set S is
a homomorphism φ : G→ Perm(S). This gives a G-set structure on S. Action is g.s = (φ(g))(s).

Proposition 13.3. Every G-set S arises from some permutation representation. Given G-set S, need to
define homomorphism φ : G→ Perm(S), take φ(g)(s) = g.s.

Definition 13.4. Let S1, S2 be G-sets. A morphism of G-sets is a function ψ : S1 → S2 such that
g.ψ(S) = ψ(g.s) for all g ∈ G, s ∈ S1. Say that ψ is G-equivalent or that ψ is compatible with the
G-action.

14 Orbits and Stabilisers

Let G = group, S = G−set. Define relation ∼ on S by s ∼ t ⇐⇒ there exists g ∈ G such that t = g.s.

Proposition 14.1. This ∼ is an equivalence relation.

Proof. Reflexive: 1 ∈ G. Symmetric: if t = g.s then s = g−1.t. Transitive: if t = g.s and u = g′.t
then u = g′.(g.s) = (g′g).s.

Corollary - Definition 14.2 (Orbits). The equivalence classes of ∼ are called G-orbits. Also, S is a
disjoint union of orbits. The G-orbit containing s ∈ S is denoted G.s = {g.s : g ∈ G}. S/G denotes the
set of G-orbits of S.

Proposition - Definition 14.3 (G-stable). Let S be a G-set. A subset T ⊆ S is called G-stable if
g.t ∈ T for all g ∈ G, t ∈ T .

Proposition 14.4. Let S = G-set and s ∈ S. The orbit G.s is the smallest G-stable subset of S containing
s.

Proof. G.s is G-stable. If T is a G-stable subset containing s then G.s ⊆ T . Check these.

Definition 14.5. We say G acts transitively on G-set S, if S consists of a single orbit. i.e. for all
t, s ∈ S, there exists g : g.s = t.
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Example 14.6. Let G = GLn(R)n(C). G acts on S = Mn(C), the set of n × n matrices over
C, by conjugation, i.e. for all A ∈ G = GLn(C),M ∈ S,A.M = AMA−1. Let us check indeed
this gives a group action. Check axioms. (i)In.M = InMI−1 = M.(ii)A.(B.M) = A.(BMB−1) =
ABMB−1A1 = (AB)M(AB)−1 = (AB).M. What are the orbits? GM = {AMA−1 : A ∈ GLn(C)}.

Definition 14.7 (Stabilisers). Let s ∈ S. Then the stabiliser of s is stabG(s) = {g ∈ G : g.s = s} ⊆ G

Proposition 14.8. Let S be a G-set and let s ∈ S. Then stabG(s) ≤ G.

15 Structure of G-orbits

Proposition 15.1. Let H ≤ G. Then G/H is a G-set with the action g′.(gH) = (g′g)H for all g, g′ ∈ G

Proof. Checking axioms to show G/H is a G-set.

(i) 1.(gH) = gH

(ii) g′′.(g′.(gH)) = (g′′g′)(gH). LHS = g′′.(g′gH) = g′′g′g′H = (g′′g′)gH = RHS.

Theorem 15.2 (Structure of G-orbits). Suppose G acts transitively on S. Let s ∈ S and H = stabG(s) ≤
G. Then there is an isomorphism of G-sets: ψ : G/H → S; gH 7→ g.s.

Proof. Well-defined: if gH = g′H then g′ = gh for h ∈ H. So we need to check g.s = g′.s. RHS
= g′.s = (gh).s = g.(h.s) = g.s = LHS, for h ∈ stab(s).

Next we need to check its a morphism of G-sets. i.e. ψ(g′(gH)) = g′.ψ(gH) =⇒ (g′g).s = g′.(g.s).
Next surjective because action is transitive. Injective: if ψ(gH) = ψ(g′H) =⇒ g.s = g′.s =⇒ s =
(g−1g′).s. So g−1g′ ∈ stab(s) = H so g′ ∈ gH, gH = g′H.

Corollary 15.3. If G is finite then, |G.s| divides |G| by Lagrange’s theorem.

Proposition 15.4. Let S = G-set, s ∈ S, g ∈ G. Then stabG(g.s) = g. stabG(s).g−1.

Corollary 15.5. Let H1, H2 ≤ G be conjugate. (i.e. H2 = gH1g
−1 for some g ∈ G). Then G/H1

∼= G/H2

as G-sets.

Definition 15.6. If S = a platonic solid (all faces same, and all regular polygons, and same number of
faces at each vertex) and G = group of rotation symmetries = symmetries ∩SO3.

Proposition 15.7. With notation as above, then |G| = number of faces × number of edges on each face.

Proof. Let F = set of faces, G acts on F . Gives a G-set structure to F . Let f ∈ F be a face,
then G.f = F (i.e. action is transitive). By the theorem, F ∼= G/ stabG(f). But stabG(f) =
rotations around axis through face. stabG(f) = number of edges on each face which implies |G| =
|F || stabG(f)|.

17



16 Counting Orbits and Cayley’s Theorem

Let G be a group and S be a G-set.

Definition 16.1 (Fixed Point Set). The fixed point set of a subset J ⊆ G is SJ = {s ∈ S : j.s =
s for all j ∈ J}.

Proposition 16.2. Let S be a G-set

i) If J1 ⊆ J2 ⊆ G then SJ2 ⊆ SJ1

ii) If J ⊆ G then SJ = S〈J〉

Example 16.3. G = Perm(R2) acts naturally on S = R2. Let τ1, τ2 ∈ G be reflections about lines
L1, L2. Then Sτi = Li, S

{τ1,τ22} = L1 ∩ L2 and S〈τ1,τ2〉 = L1 ∩ L2.

Theorem 16.4. Let G be a finite group and S be a finite G-set. Let |X| denote the cardinality of X.
Then

number of orbits of S =
1

|G|
∑
g∈G

|Sg| = average size of the fixed point set

Proof. Let S =
⋃̇
iSi where Si are G-orbits. Then Sg =

⋃̇
iS

g
i . LHS =

∑
i number of orbits of

Si (since Si’s are union of G-orbits and Si’s are disjoint) while RHS =
∑

i
1
|G|
∑

g∈G |S
g
i |. Thus it

suffices to prove theorem for S = Si and then just sum over i. But S are disjoint union of G-orbits,
so can assume S = Si = G-orbit which by (Theorem 15.2), means S ∼= G/H for some H ≤ G. So in
this case

RHS =
1

|G|
∑
g∈G

|Sg|

=
1

|G|
× number of (g, s) ∈ G× S : g.s = s by letting g vary all over G

=
1

|G|
∑

s∈S=G/H

| stabG(s)|

Note by proposition 15.4, these stabilisers are all conjugates, and hence all have the same size. Since
| stabG(1.H)| = |H|, | stabG(s)| = |H| for all s ∈ S. Hence RHS = 1

G
|G/H||H| = |H|

|G|
|G|
|H| = 1 and

LHS = number of orbits of S = 1 as S is assumed to be a G-orbit.

Example 16.5. Birthday cake with 8 slices. Red/green candle on each slide. How many ways?
Notice that: two arrangments are the same if you can rotate one to get the other.

S = {0, 1}8, |S| = 28 = 256. σ ∈ Perm(S) acts by σ(x1, . . . , x8) = (x2, x3, . . . , x8, x1). G = 〈σ〉, |G| =
8. We want to find number of G-orbits. By the theorem above, this is equal to 1

8

∑
g∈G |Sg|. Trying

each g:
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g = 1 =⇒ |S1| = 28 g = σ4 =⇒ |Sσ4| = 24

g = σ =⇒ |Sσ| = 2 g = σ5 =⇒ |Sσ5| = 2

g = σ2 =⇒ |Sσ2| = 22 g = σ6 =⇒ |Sσ6| = 22

g = σ3 =⇒ |Sσ3| = 2 g = σ7 =⇒ |Sσ7| = 2

Final Answer:
1

8
(256 + 16 + 4 + 4 + 4 + 4 · 2) =

1

8
(288) = 36.

Definition 16.6 (Faithful Permutation Representation). A permutation representation φ : G → PermS
is faithful if kerφ = 1.

Theorem 16.7 (Cayley). Let G be a group. Then G is isomorphic to a subgroup of Perm(G). In
particular, if |G| = n <∞, then G is isomorphic to a subgroup of Sn.

Proof. Let G act oon itself: g.h = gh. This gives φ : G → Perm(G). If g ∈ G has property that
gh = h for all h ∈ G then g = 1. Clear, take h = 1.
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Part II

Ring Theory

17 Rings

Definition 17.1 (Ring). A ring is an abelian group R, with group addition together with ring multipli-
cation map (µ : R×R→ R) satisfying:

i) associativity: (rs)t = r(st) for all r, s, t ∈ R.

ii) there exists 1R ∈ R such that 1r = r and r1 = r for all r ∈ R.

iii) distributive law: r(s+ t) = rs+ rt and (r + s)t = rt+ st for all r, s, t ∈ R.

Similar to a group, 1 is unique and 0r = 0.

Example 17.2. C,Z,R,Q are all rings.

Example 17.3. Let V be a vector space over C. Define EndC(V ) be the set of linear maps T : V →
V . Then EndC(V )is a ring when endowed with ring additional equal to sum of linear maps, ring
multiplication equal to composition of linear maps. 0 = constant map to 0 and 1 = idV .

Proposition - Definition 17.4 (Subrings). A subset of S ⊆ R is a subring if:

i) s+ s′ ∈ S for all s, s′ ∈ S

ii) ss′ ∈ S for all s, s′ ∈ S

iii) −s ∈ S for all s ∈ S

iv) 0R ∈ S

v) 1R ∈ S.

Then S becomes a ring with restricted +, ·, 0, 1. Note the identity 1R is the identity from R.

Example 17.5. Z,Q,R are all substrings of C. Also the set of Gaussian integers Z[i] = {a + bi :
a, b ∈ Z} is a subring.

Example 17.6. Matrices Mn(R) and Nn(C) both form rings. The set of upper triangular matrices
form a subring.

Proposition 17.7. i) subrings of subrings are subrings

ii) intersection of subrings is a subring

Proposition - Definition 17.8 (Units). Let R = ring. An element u ∈ R is called a unit or invertible
if there exists v ∈ R such that uv = 1 and vu = 1. Define R∗ = {set of units in R} as a group (with
multiplicative structure).
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Example 17.9. Z∗ = {1,−1},Q∗ = Q \ {0}

Definition 17.10 (Commutative Ring). A ring R is commutative if rs = sr for all r, s ∈ R.

Definition 17.11 (Fields). A commutative ring R is a field if R∗ = R− 0. i.e. Every non-zero element is
invertible.

18 Ideals and Quotient Rings

Let R = ring.

Definition 18.1 (Ideals). A subgroup I of the underlying abelian group R is called an ideal of R if

for all r ∈ R, x ∈ I, we have rx ∈ I and xr ∈ I.

Then we write I E R.

Example 18.2. nZ E Z is an ideal of Z. It is a subgroup as if m ∈ nZ then rm ∈ nZ for any
integer r.

Lemma 18.3. If {Ii}i∈A ideals in R then
⋂
i∈A Iiis an ideal of R.

Corollary 18.4. Let R = ring, S ⊆ R any subset. Let J = set of all ideals I E R such that S ⊆ I. Define
〈S〉 =

⋂
I∈J J as the ideal generated by S. (i.e. smallest ideal containing S).

Proposition 18.5. i) If I, J E R then ideal generated by I ∪ J is I + J = {i+ j : i ∈ I, j ∈ J}.

ii) Assume R is commutative and x ∈ R. Then 〈x〉 = Rx = {rx : r ∈ R} ⊆ R.

iii) R commutative, x1, . . . , xn ∈ R. Then 〈x1, . . . , xn〉 = Rx1 + . . . Rxn = {r1x1 + . . . rnxn : r1, . . . , rn ∈
R}. Set of R-linear combinations of x1, . . . , xn.

Proposition - Definition 18.6 (Quotient Rings). Let I E R. The abelian group R/I has a well-defined
multiplication map µ : R/I ×R/I → R/I; (r+ I, s+ I) 7→ rs+ I which makes R/I into a ring, called the
quotient ring of R by I.

Proof. Check multiplication is well defined, given x, y ∈ I, we need rs + I = (r + x)(s + y) + I.
RHS = rs + xs + ry + xy + I = rs + I as xs, ry, xy ∈ I. Note that the ring axioms for R/I follow
from ring axioms for R.

Example 18.7. Again Z/nZ is essentially modulo n arithmetic, i.e. (i + nZ)(j + nZ) = ij + nZ.
Thus Z/nZ represents not only the addition but also the multiplication in modulo n.
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19 Ring Homomorphisms

Proposition - Definition 19.1 (Homomorphism). Let R, S be rings. A ring homomorphism is a group
homomorphism φ : R→ S such that:

i) φ(1R) = 1S

ii) φ(rr′) = φ(r)φ(r′) for all r, r′ ∈ R.

Definition 19.2 (Isomorphism). A ring isomorphism is a bijective ring homomorphism φ : R → S. In
this case φ−1 is also a ring homomorphism. We write R ∼= S as rings.

Proposition 19.3. Let φ : R→ S be a ring homomorphism.

i) If R′ is a subring of R then φ(R′) is a subring of S.

ii) If S ′ is a subring of S then φ−1(S ′) is a subring of R.

iii) If I E S then φ−1(I) E R

Corollary 19.4. In particular, Imφ = φ(R) is a subring of S and kerφ = φ−1(0) E R.

Theorem 19.5. Let R = ring, I = ideal with π : R → R/I be a quotient map. Suppose φ : R → S is a
ring homomorphism such that I ⊆ kerφ. Recall group situation gives a map ψ : R/I → S then ψ is also
a ring homomorphism. Special case for I = kerφ: R/ kerφ ∼= Imφ (as rings).

Proposition 19.6. Let J E R and let π : R→ R/J be quotient map. Then there is a 1-1 correspondence:

{I E R such that J ⊆ I} ↔ {ideals Ī E R/J}

Definition 19.7. An ideal I E R, with I 6= R, is called maximal if it is not contained in any strictly
larger ideal J 6= R.

Example 19.8. 10Z E Z is not maximal as 10Z $ 2Z E Z. However 2Z E Z is maximal.

Proposition 19.9. Let R 6= 0 be a commutative ring.

i) R is a field ⇐⇒ every proper ideal is maximal

ii) if I E R, with I 6= R, I is maximal ⇐⇒ R/I is a field

Proof. Assume R is a field. Let I E R, and assume I 6= 0. Then can choose x ∈ I, x 6= 0. Then x
is invertible, let y = x−1 then 1 = yx ∈ I therefore I = R.

Converse: assume only ideals of R are 0 and R. Take any x ∈ R, x 6= 0. Consider I = 〈x〉, cannot
be 0, since x ∈ I then I = R so xy = 1 for some y. This proves x is invertible so R is a field.

Theorem 19.10 (Second Isomorphism Theorem). R is a ring. I E R, J E R with J ⊆ I. Then
R/J
I/J
∼= R/I.
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Proof. Consider R → R/J → R/J
I/J

, show kernel is I. Then follows from First Isomorphism
Theorem.

Theorem 19.11 (Third Isomorphism Theorem). Let S ⊆ R be a subring and I E R. Then S + I is a
subring of R and S ∩ I E S.

S

S ∩ I
∼=
S + I

I
.

Example 19.12. S = C[x] subring of R = C[x, y]. Let I = 〈y〉 E C[x, y].

• S ∩ I = C[x] ∩ 〈y〉 = 0.

• S + I = C[x, y] = R

Then by the Third Isomorphism Theorem,

S

S ∩ I
=

C[x]

0
= C[x] and

S + I

I
=

C[x, y]

〈y〉
,

C[x, y]/〈y〉 ∼= C[x].

20 Polynomial Rings

Definition 20.1 (Polynomials). Let R be a ring. A polynomial in x with coefficients in R is a formal
expression of the form

p =
∑
i≥0

rix
i where ri ∈ R and ri = 0 for all sufficiently large i.

= r0x
0 + r1x

1 + · · ·+ rnx
n.

Let R[x] denote the set of all such polynomials.

Proposition - Definition 20.2 (Polynomial Ring). R[x] is a ring. called the (univariate) polynomial
ring with coefficients in R, when equipped with:

• Addition:
∑

i≥0 rix
i +
∑

i≥0 r
′
ix
i =

∑
i≥0(ri + r′i)x

i.

• Multiplication:
(∑

i≥0 rix
i
)

+
(∑

i≥0 r
′
ix
i
)

=
∑

i≥0

(∑
j+k=i rjr

′
k

)
xi.

• Zero: ri = 0 for all i.

• One: r0 = 1 and ri = 0 for all i ≥ 1.

Proposition 20.3. Let φ : R→ S be a ring homomorphism

i) R is a subring of R[x] under r 7→ r + 0x+ 0x2 + . . .

ii) φ induces φ[x] : R[x]→ S[x] where φ
(∑

i≥ rix
i
)

=
∑

i≥0 φ(ri)x
i and this is a ring homomorphism.
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Definition 20.4 (Evaluation Homomorphism). Let S ⊂ R be a subring. Let r ∈ R such that rs = sr for
all s ∈ S. Define evaluation map:

εr : S[x]→ R; p =
∑
i≥0

six
i 7→

∑
i≥0

sir
i = p(r).

Proposition 20.5. εr is a ring homomorphism from S[x]→ R.

Corollary 20.6. Assume R is commutative. Consider the map c : S[x] → Fun(R,R); p 7→ (r 7→ p(r)).
Thenc is a ring homomorphism.

Example 20.7. p(x) := x2 + x ∈ (Z/2Z)[x]. Trying values

p(0) = 02 + 0 = 0 p(1) = 12 + 1 = 0

p(α) = 0 for all α in domain (Z/2Z). We have p 6= 0 in (Z/2Z)[x] but c(p) = 0. That is, p defines a
zero function.

Polynomials in Several Variables A possible definition is that

R[x1, x2, . . . , xn] = (. . . ((R[x1])[x2])[x3] . . . [xn]) = R[x1][x2] · · · [xn].

Another definition is that R[x1, . . . , xn] =
{∑

i∈Nn rix
i : only finitely many non-zero ri’s.

}
. Defined sim-

ilarly to i = (i1, . . . , in) : xi = xi11 x
i2
2 . . . x

in
n . This definition then requires you to define suitable ring

operations.

Proposition - Definition 20.8. Let S be a subring of commutative ring R and r1, . . . , rn ∈ R. Then
S[r1, . . . , rn] is the subring of R generated by S ∪{r1, . . . , rn}. Equivalently it is the image of S[x1, . . . , xn]
under the evaluation map xi 7→ ri for all i.

Example 20.9. R = C, S = Z. Then Z[i] is the subring generated by Z and i. That is,

Z[i] = Im(εi : Z[x] 7→ C) =

{∑
j≥0

aji
j : aj ∈ Z

}
= {a+ ib : a, b ∈ Z}

21 Matrix Rings

Let R be a ring. Then Mn(R) is the set of n× n matrices with entries in R. Denoted,

(rij) =


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rn1 rn2 · · · rnn

 rij ∈ R.

Proposition 21.1. Mn(R)is a ring with operations

• (aij) + (bij) = (aij + bij)

• (aij)(bij) = (cij) where cij =
∑n

k=1 aikbkj. Here order of multiplication is significant.
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• 1Mn(R) =


1R 0 · · · 0
0 1R · · · 0
...

...
. . .

...
0 0 · · · 1R


Note R not necessarily commutative. e.g. M3(M2(R)).

Example 21.2. In M2(C[x]),

(
1 x
0 2

)(
x3 0
4 −x5

)
=

(
4x+ x3 −x6

8 −2x5

)

22 Direct Products

Proposition 22.1. Let Ri, i ∈ I be rings. Πi∈IRi is already an abelian group under addition. It becomes
a ring with multiplication: (ri)(si) = (risi) and identity (1R, 1R, . . . , )

Example 22.2. For R× R, we define

• Addition: (a, b) + (a′, b′) = (a+ a′, b+ b′)

• Multiplication: (a, b)(a′, b′) = (aa′, bb′)

• Identity: (1, 1)

Note R is a field. But R× R is not a field because (1, 0) has no inverse.

Lemma 22.3. Let R be a commutative ring and I1, . . . , In E R such that Ii + Ij = R for each pair of i, j.
Then I1 + ∩i≥2Ii = R.

Proof. Choose ai ∈ I1, bi ∈ Ii such that ai + bi = 1 for i = 2, . . . , n since I1 + Ii = R. Then

1 = (a2 + b2)(a3 + b3) . . . (an + bn)

= [sum of terms involvingai] + (b2b3 . . . bn)

∈ I1 + ∩i≥2Ii.

So R = I1 + ∩i≥2Ii as r ∈ R, r1 = r ∈ I1 + ∩i≥2Ii.

Theorem 22.4 (Chinese Remainder Theorem). Let R be a commutative ring and I1, . . . , In E R such
that Ii + Ij = R for each pair of i, j. Then the natural map

R/ ∩ni=1 Ii → R/I1 ×R/I2 × · · · ×R/In
r + ∩ni=1Ii 7→ (r + I1, r + I2, . . . , r + In)

is an isomorphism.

Proof. (Missing some details). We prove the result by induction on n. Let n = 2. Consider
ψ : R/(I1 ∩ I2) → R/I1 × R/I2 with r + (I1 ∩ I2) 7→ (r + I1, r + I2). Then ψ is well-defined if
r− s ∈ I1 ∩ I2 then r+ I1 = s+ I1 and r+ I2 = s+ I2. If ψ(r+ (I1 ∩ I2)) = 0 then r ∈ I1 and r ∈ I2
so r ∈ I1 ∩ I2 so ψ is injective. Choose x1 ∈ I1, x2 ∈ I2 such that x1 + x2 = 1. Now given r1 and r2,
observe ψ(r2x1+r1x2) = (r2x1+r1x2+I1, r2x1+r1x2+I2). Consider r2x1+r1x2+I1. Then r2x1 ∈ I1
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as x1 ∈ I1 and r1x2 = r1(1− x1) = r1 − r1x1 with x1 ∈ I1 which implies r2x1 + r1x2 + I1 = r1 + I1.
Similarly r2x1 + r1x2 + I2 = r2 + I2. So ψ(r2x1 + r1x2) = (r1 + I1, r2 + I2) hence ψ is onto. Using
the above lemma, we have the n = 2 case.

Example 22.5. If R = Z, I1 = 3Z, I2 = 5Z then I1 ∩ I2 = 15Z. So we have the following
isomorphism,

Z/15Z→ Z/3Z× Z/5Z
n+ 15Z 7→ (r + 3Z, r + 5Z)

Note Z/24Z→ Z/4Z× Z/6Z is not an isomorphism.

23 Field of Fractions

In this section let R be a commutative ring.

Definition 23.1 (Domain). R is called a domain (or integral domain) if for all r, s ∈ R : rs = 0 =⇒ r =
0 or s = 0. i.e. R does not have non-trivial zer divisors.

Example 23.2. Z,C[x1, . . . , xn] are both domains. Z/6Z is not a domain as 2× 3 = 0 but neither
2 6= 0, 3 6= 0. However Z/pZ for a prime p is a domain. In fact, any field is a domain.

Then we define R̃ = R× (R− 0) =

{(
a
b

)
: a ∈ R, b ∈ R− 0

}
. Now define a relation on R̃:

(
a
b

)
∼
(
a′

b′

)
if ab′ = a′b.

Lemma 23.3. ∼ is an equivalence relation on R̃.

Proof. Reflexive and symmetric are easy. For transitivity, if ab′ = a′b and a′b′′ = a′′b′ then the first
equation implies ab′b′′ = a′bb′′ = a′′bb′ =⇒ (ab′′ − a′′b)b′ = 0. Since R is a domain then ab′′ = a′′b.

Notation Let a
b

denote the equivalence class of

(
a
b

)
and K(R) = R̃/ ∼, the set of fractions.

Lemma 23.4. The operations a
b

+ c
d

= ad+bc
bd

and a
b
· c
d

= ac
bd

give well-defined addition and multiplication
on K(R).

Theorem 23.5. These ring addition/multiplication maps make K(R) into a field, with 0K(R) = 0R
1R

and

1K(R) = 1R
1R

.

Example 23.6. K(Z) = Q and K(R[x]) = set of real rational functions ={
f(x)
g(x)

: f, g ∈ R[x], g 6= 0
}

. Similarly, K(Q[x]) =
{
f(x)
g(x)

: f, g ∈ Q[x], g 6= 0
}

= K(Z[x]). Let

F be a field, then K(F [x1, . . . , xn]) = F (x1, . . . , xn), where this indicates a field of rational functions
in x1, . . . , xn over F .

Proposition 23.7. i) The map ι : R→ K(R);α 7→ α
1

is an injective ring homomorphism. This allows
us to consider R as a subring of K(R).
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ii) If S is a subring of R then K(S) is essentially a subring of K(R).

Proposition 23.8. If F is a field, then K(F ) = F . i.e. the map ι : F → K(F ) is an isomorphism.

Proof. Injective from above. Surjectivity as given a
b
∈ K(F ), b 6= 0, then ι(ab−1) = ab−1

1
= a

b

because (ab−1)b = 1a.

Example 23.9. By the above proposition we have K(Q[i]) = Q[i] = {r + si : r, s ∈ Q}. But by
Proposition 23.7, Z[i] ≤ Q[i] =⇒ K(Z[i]) ≤ K(Q[i]) and hence K(Z[i]) = Q[i]. More generally,
K(R) is the smallest field containing R.

24 Introduction to Factorisation Theory

In this section let R be a commutative domain.

Definition 24.1 (Prime Ideal). An ideal P E R,P 6= R is called prime if R/P is a domain. Equivalently,
if rs ∈ P then either r ∈ P or s ∈ P (or both).

Example 24.2. Z/pZ for prime p, is a domain, so pZ E Z. (0) E Z is prime but not maximal.

〈y〉 E C[x, y] is prime because C[x, y]/〈y〉 ∼= C[x] is a domain.

If m E R is maximal, then m is prime because R/m is a field which implies R/m is a domain.

Definition 24.3 (Divsibility). Let r, s ∈ R. We say r | s, “r divides s” if s = rt for some t ∈ R.
Equivalently s ∈ 〈r〉 or 〈s〉 ⊆ 〈r〉.

Example 24.4. 3 | 6 as 6Z ⊆ 3Z.

Definition 24.5 (Associates). Let r, s ∈ R − 0 are associates if one of the following two equivalent
conditions hold:

• 〈r〉 = 〈s〉 i.e. r | s and s | r.

• There is a unit u ∈ R∗ (u is a unit of R) with r = us.

Example 24.6. In Z : 〈−2〉 = 〈2〉 so 2,−2 are associates. In Z[i] : 〈3i〉 = 〈3〉 = 〈−3 〉.

Definition 24.7 (Primes). An element p ∈ R, p 6= 0 is prime if 〈p〉 is prime. Equivalently p is not a unit,
and p | rs =⇒ p | r or p | s.

Definition 24.8 (Irreducibles). An element p ∈ R, p 6= 0, p is not a unit, is irreducible whenever p = rs,
either r or s is a unit.

Example 24.9. p = 5 = 5 · 1 = (−5)(−1) = 1 · 5 = (−1)(−5), so 5 is irreducible. p = 4 = 2 · 2 but
neither 2 nor 2 are units, so 4 is not irreducible.

27



Proposition 24.10 (Prime implies Irreducible). Suppose p ∈ R is prime. Then p is not a unit (otherwise
〈p〉 = R is not prime). Suppose p = rs, r, s ∈ R then p | rs. Without loss of generality say p | r, so r = pq
for some q ∈ R. Then p = pqs =⇒ 1 = qs, so s is a unit.

Definition 24.11 (Unique Factorisation Domains). R is a unique factorisation domain (UFD) if

i) every nonzero non-unit r ∈ R can be written as r = p1 · · · pn with all pi irreducible.

ii) if r = p1 · pn = q1 · · · qm with all pi, qi irreducible, then n = m and we can re-index the qi such that
pi and qi are associates for all i.

Example 24.12. Z is a UDF. In Z, 30 = 2 · 3 · 5 = (−5)(−3)2. 12 = 2 · 2 · 3 = (−2)2(−3).

Lemma 24.13. Assume every irreducible is prime. If r can be factored into irreducible (as in (i)) then
the factorisation is unique (i.e. as in (ii)).

Example 24.14. R = C[x] so C[x]× = C×. Any complex polynomial factors into linear factors
(Fundamental Theorem of Algebra) so the irreducibls are linear polynomias, i.e. α(x − β), β ∈
C, α ∈ C×. We prove x−β is prime as C[x]/〈x−β〉 ∼= C is a domain. i.e. every irreducible is prime.

Proof. Suppose r ∈ R, r = p1 · · · pn = q1 · · · qm (both products of irreducibles). Induction on n.
n = 1, p1 = q1 · · · qm. Then by definition of irreducible, m = 1 and p1 = q1.

Now suppose n > 1, p1 · · · pn = q1 · · · qm. THen p1 | q1 · · · qm, but p1 irreducible which means p1 is
prime. Then p1 divides some qi. After permuting qi’s, assume p1 | q1. So q1 = p1u where u is a unit.
Cancel out p1, q1 from relation, p2 · · · pn = (uq2)q3 · · · qm. By induction, (p2 · · · pn) is a permutation
(uq2 · · · qm) up to associates.

25 Principal Ideal Domains

Definition 25.1 (Principal Ideal Domain). Let R be a commutative ring. An ideal I is principal if
I = 〈r〉, r ∈ R (generated by a single element). A principal ideal domain (PID) is a domain where every
ideal is principal.

Example 25.2. Z is a PID, every ideal of is of the form nZ.

Proposition 25.3. Let R be a PID. Let p ∈ R, p 6= 0, then p is irreducible if and only if 〈p〉 is maximal.

Proof. (⇐= ) Assume p is not irreducible, so p = rs. Neither r, s are units. Then 〈p〉 = 〈rs〉 ( 〈r〉
so 〈p〉 is not maximal. (Alternatively : 〈p〉 maximal =⇒ 〈p〉 prime =⇒ p prime =⇒ p irreducible.)

( =⇒ ) Suppose 〈p〉 ⊆ I. Since R is a PID, I = 〈q〉 for some q hence q | p. Since p irreducible, either
q = up(u ∈ R∗) =⇒ I = 〈q〉 = 〈p〉 or q is a unit so I = 〈q〉 = R.

Corollary 25.4. In a PID, irreducibles are prime.

Proof. p ideal =⇒ 〈p〉 maximal =⇒ R/〈p〉 is a field =⇒ R/〈p〉 is a domain =⇒ 〈p〉 prime
=⇒ p is prime.
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Note, in a PID factorisations are unique if they exist.

Lemma 25.5. Let S be a ring. Let I0, I1, I2, . . . are ideals of S such that I0 ⊆ I1 ⊆ I2 ⊆ · · ·. Then
⋃
i≥0 Ii

is an ideal of S.

Proof. Suppose x, y ∈ ∪i≥0Ii then x ∈ In and y ∈ Im, so x, y ∈ Ik where k = max(n,m) therefore
x+ y ∈ Tk ⊆ ∪i≥0Ti. Then prove other ideal properties.

Theorem 25.6. Any PID is a UFD.

Proof. We need to prove that any r0 ∈ R, not has a factorisation into ideals. Suppose r0 ∈ R,
not a unit is not a product of irreducibles. In particular r itself is not irreducible, so r = r1q1 where
r1, q1 not units. At least one of r1, q1 is not a product of irreducibles. Repeat this argument for
r1 = r2q2 where without loss of generality, r2 is not a product of irreducibles. Then we have r0, r1, r2
so r1 | r0, r2 | r1 etc.. Then 〈r0〉 ⊆ 〈r1〉 ⊆ 〈r2〉 ⊆ . . ..

Let I = ∪i≥0〈ri〉. By the previous Lemma, I is an ideal. Since R is a PID, I = 〈s〉, s ∈ R. So
s ∈ 〈rn〉 for some n, I ⊆ 〈rn〉 ⊆ 〈rn+1〉 ⊆ · · · ⊆ I. So in fact, I = 〈rn〉 = 〈rn+1〉 = . . . but this
contradicts 〈rn〉 ( 〈rn+1〉 because rn = rn+1qn+1 where qn+1 is not a unit.

Definition 25.7 (Greatest Common Divisor). Let R be a PID (works for UFD). Let r, s ∈ R, r, s 6= 0.
Then a greatest common divisor (gcd) of r and s is an element d ∈ R such that d | r, d | s and if c ∈ R is
any element such that c | r, c | s, then c | d. Write d = gcd(r, s). d is defined only up to units.

Any 2 gcd’s divide each other so are associates.

Proposition 25.8. In a PID, r, s ∈ R− {0} then r, s have a gcd d such that 〈d〉 = 〈r, s〉.

Proof. Given r, s. Consider 〈r, s〉 = {ar + bs : a, b ∈ R}. Since R is PID, 〈r, s〉 = 〈d〉 for
some d ∈ R. d | r is clear since r ∈ 〈d〉. Similarly d | s. Now suppose c | r and c | s. Then
r, s ∈ 〈c〉 =⇒ 〈r, s〉 ⊆ 〈c〉 =⇒ 〈d〉 ⊆ 〈c〉 =⇒ c | d.

26 Euclidean Domains

The motivation here is to give a useful criterion for a commutative domain to be a PID and UFD.

Proposition 26.1. R = C[x] is a PID.

Proof. Let I be a nonzero ideal in C[x]. Let f ∈ I be a nonzero element of smallest degree. It
is clear that 〈f〉 ⊆ I. Now given any g ∈ I, divide g by f : g = fq + r, where either r = 0 or
deg r < deg f (This uses the fact that C[x] has a division algorithm). Thus f ∈ I, so qf ∈ I also
g ∈ I =⇒ r = g − qf ∈ I. By choice of f (minimal degree in I) we must have r = 0. Therefore
f | g i.e. g ∈ 〈f〉 so I =⊆ 〈f〉. This proves I = 〈f〉.

Definition 26.2 (Euclidean Domain). Let R be a commutative domain. A function ν : R − {0} → N is
called a Euclidean function on R if:

i) for all f, p ∈ R, p 6= 0, there exists q, r ∈ R such that f = pq + r where either r = 0 or ν(r) < ν(p).

ii) if f, g ∈ R− {0} then ν(f) ≤ ν(fg).

If R has such a function, we call it an Euclidean domain.
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Example 26.3. If R = F [x] where F is a field. Then ν(f) = deg f . If R = Z, then ν(n) = |n|.

Theorem 26.4. Let R be a Euclidean domain with ν. Then R is a PID and hence a UFD.

Proof. Let I E R be nonzero ideal. Choose f ∈ I with minimal ν(f). Clearly 〈f〉 ⊆ I. Given
g ∈ I write g = qf + r with r = 0 or ν(r) < ν(f) as before (previous proof) r ∈ I. So r = 0 then
f | g so I ⊆ 〈g〉.

Lemma 26.5. Let R be one of Z[i] = Z[
√
−1],Z[

√
−2],Z[1+

√
−3

2
],Z[1+

√
−7

2
],Z[1+

√
−11
2

]. Define ν : R → R
by ν(z) = |z|2. Then

i) ν takes integer values on R

ii) for any z ∈ C, there is some s ∈ R such that ν(z − s) < 1.

Proof. We prove this for Z[
√
−2] = {a + b

√
−2 : a, b ∈ Z}. Then ν(a + b

√
−2) = |a + b

√
−2|2 =

a2 + 2b2 ∈ N. Let z = x + iy ∈ C. Choose s to be closest a + b
√
−2 to z. Then |a − x| ≤

1
2

and |b
√

2− y| ≤
√
2
2

. Then

|s− z|2 = |(a+ b
√
−2)− (x+ iy)2 ≤ (

1

2
)2 + (

√
2

2
)2 =

3

4
< 1.

So ν(s − z) < 1. We can repeat this argument for the other cases with simple modification of the
argument.

Theorem 26.6. Let R be one of the rings from the previous lemma. Then ν is a Euclidean norm on R.

Note For the remainder of this section, denote R to be a Euclidean domain and ν : R → Z+ the
Euclidean norm.

Proposition 26.7. Let I E R be an ideal. Let p ∈ I, p 6= 0. Then p generates I ⇐⇒ ν(p) is minimal
(on I). In particular, p ∈ R∗ ⇐⇒ ν(p) = ν(1).

Proof. If ν(p) minimal then by the results prior I = 〈p〉. Conversely, if I = 〈p〉 and f = gp ∈ I
for some g then ν(f) = ν(gp) ≥ ν(p).

Example 26.8. In Z[i] : ν(z) = |z|2. u ∈ Z[i]∗ =⇒ |u|2 = 1 =⇒ u = ±1,±i. Also,
Z[
√
−2]∗ = {±1} for ν(z) = |z|2.

Theorem 26.9 (Euclidean Algorithm). To find the gcd of two elements f and g we can use the following
algorithm. Assume ν(f) ≥ ν(g). Find q, r ∈ R such that f = qg + r with either r = 0or ν(r) < ν(g).
If r = 0, then 〈f, g〉 = 〈g〉 because f ∈ 〈f〉 so the gcd is g. If r 6= 0, then 〈f, g〉 = 〈g, r〉 since
f ∈ 〈g, r〉(f = qg + r), r ∈ 〈f, g〉(r = f − qg). So gcd(f, g) = gcd(g, r). In this case, repeat first
step with g, r instead of f, g. The algorithm terminates because ν(r) < ν(g) and N has minimum at 0.

Example 26.10. In R = Z[
√
−2], find gcd(y +

√
−2, 2

√
−2) for y odd. Answer is 1, see course

notes for computation.

Theorem 26.11. The only integer solutions to y2 + 2 = x3 are y = ±5, x = 3.
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Proof. If y is even, then x3 is even, then x is even. So x3 = 0 mod 8. But LHS can only be 2 or
6 mod 8, hence ymust be odd.

Let’s work in Z[
√
−2]. The equation becomes (y +

√
−2)(y −

√
−2) = x3.

gcd(y +
√
−2, y −

√
−2) = gcd(y +

√
−2, (y −

√
−2)− (y +

√
−2))

= gcd(y +
√
−2, 2

√
−2)

= 1.

Now have: (y +
√
−2)(y −

√
−2) = x3. By UFD, y +

√
−2 = uα3 where u ∈ Z[

√
−2]∗, α ∈ Z[

√
−2].

More detail: consider prime factorisation of y+
√
−2, y−

√
−2, x3. Any prime must occur

as p3e on RHS for some e ∈ Z. If e ≥ 1, then p | either y +
√
−2 or y −

√
−2 but not

both. So p3e is the exact power of p divides either y +
√
−2 or y −

√
−2.

Possible units: u± 1 which are both cubes. So

y +
√
−2 = β3 = (a+ b

√
−2)3

= a3 + 3a2b
√
−2− 6ab2 − 2b3

√
−2

= (a3 − 6ab2) +
√
−2(3a2b− 2b3)

y −
√
−2 = (a3 − 6ab2)−

√
−2(3a2b− 2b3).

Subtract both sides

2
√
−2 = 2

√
−2(3a2b− 2b3)

1 = 3a2b− 2b3 = b(3a2 − 2b2)

b = ±1

Then you can find a, deduce y which then gives x.

27 Gauss’s Lemma

Proposition 27.1. In a UFD, any irreducibles are primes.

Proof. Follows from observation that q1 | rt =⇒ q1 = upj or q1 = vrl, u, v ∈ R∗ by unique
factorisation. Therefore q1 | pj | r or q1 | rl | t.

Definition 27.2 (Primitive Polynomials). f ∈ R[x], f 6= 0 is primitive if the gcd of its coefficients is 1.

Example 27.3. 3x2 + 2 ∈ Z[x] is primitive, but 6x2 + 4 is not.

Proposition 27.4. Let R be a UFD and K = K(R).

i) if f ∈ K[x], f 6= 0, then there exists α ∈ K∗ such that αf ∈ R[x] and αf primitive

ii) if f ∈ R[x], f 6= 0 is primitive, and α ∈ K∗ such that αf ∈ R[x] then α ∈ R.
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Proof.

i) Choose d = common denominator, then df ∈ R[x]. Now choose e = gcd(coefficients of df) ∈ R.
Then df

e
∈ R[x] and primitive so take α = d

e
.

ii) Let α = n
d

with n ∈ R, d ∈ R, d 6= 0. Then gcd(coefficients of nf) = n gcd(coefficients of f) =
n× 1 = n = d gcd(coefficients of ( b

d
)f) = d gcd(coefficients of αf) =⇒ n = multiple of d =⇒

α ∈ R.

Lemma 27.5 (Gauss’s Lemma). Let R be a UFD and f = f0 + · · ·+ fmx
m, g = g0 + · · ·+ gnx

n ∈ R[x] be
primitive polynomials. Then fg is primitive.

Proof. We need to show that for any prime p, p does not divide all coefficients of fg. Consider
f̄ = image of f in (R/p)[x] and similarly for ḡ where R/p is a domain. Neither f̄ nor ḡ are 0 as they
are primitive so f̄ ḡ = f̄ g is not the zero polynomial.

Corollary 27.6. Let R be a UFD and K = K(R). Let f ∈ R[x], assume f = gh with g, h ∈ K[x]. Then
f = ḡh̄ where ḡ, h̄ ∈ R[x] and ḡ = αg, h̄ = βh where α, β ∈ K∗.

Proof. Write g = γg′, h = δh′ where γ, δ ∈ K∗ and g′, h′ ∈ R[x] with both g′, h′ primitive. Then
f = γδg′h′ then by Gauss’ lemma, g′h′ is primitive. So γδ ∈ R then take ḡ = γδg′, h̄ = h′.

Theorem 27.7. Let R be a UFD and K = K(R)

i) the primes in R[x] are either primes in R or primitive polynomials of positive degree that are irre-
ducible in K[x]

ii) R[x] is a UFD.

Corollary 27.8. Let R be a UFD, then R[x1, x2, . . . , xn] is also a UFD.
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Part III

Field Theory

28 Field Extensions

Definition 28.1 (Field Extensions). If F is a subfield of E. We say E is an extension of F , or we say
that E/F is a field extension.

Definition 28.2 (Generators of Field Extensions). Let E/F be a field extension, and let α1, . . . , αn ∈ E.
Denote F (α1, . . . , αn) the subfield of E generated by F, α1, . . . , αn. This is called the subfield generated
by α1, . . . , αn over F . If E is of the form E = F (α1, . . . , αn), we say that E/F is a finitely generated
extension.

Example 28.3. Q(i) ⊆ C, Q(i) = {a + ib : a, b ∈ Q} = Q[i]. Also, Q(π) ⊆ R, Q(π) ={
f(π)
g(π)

: fg ∈ Q[x], g 6= 0
}
6= Q[x].

Let E/F be a field extension and α ∈ E×. Recall the evaluation homomorphism, ε : F [x]→ E; p 7→ p(α)
and Im ε = F [α] ⊆ E.

Theorem - Definition 28.4 (Transcendental and Algebraic). There are two possibilities:

i) ker ε = 0. (ε is injective). i.e. α is not a root of any nonzero polynomial in F [x]. We say that α is
transcendental over F . Hence, F [α] ∼= F [x].

ii) ker ε 6= 0 = 〈p〉 where p is monic of minimal degree. Then F [α] ∼= F [x]/〈p〉. We say that α is algebraic
over F and p(x) is called the minimal polynomial of α over F . We say that E/F is algebraic if every
α ∈ E is algebraic over F .

Example 28.5. i)
√

2 = 1.414 · · · ∈ R. Minimal polynomial of
√

2:

• over Q : x2 − 2

• over R : x−
√

2

ii) In R(x)/R, the element xis transcendental over R. ε : R[x]→ R(t);x 7→ t.

iii) R/R is algebraic. Let z = a + ib ∈ C. (z − a)2 + b2 = 0 then p(x) = (x− a)2b2 = x2 − 2ax +
(a2 + b2) ∈ R[x], p(z) = 0.

Proposition 28.6. If α ∈ E is algebraic over F , then its minimal polynomial in F [x] is irreducible.

Proposition 28.7. Let F (α) be a simple extension.

i) If α is transcendental over F , then F (α) ∼= F (x) (field of rational functions in 1 variable)

ii) If α is algebraic over F , then F (α) = F [α] ∼= F [x]/〈p〉 where p is the minimal polynomial.

Proof.
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i) Know F [α] ∼= F [x], take fraction fields gives F (α) ∼= K(F [x]) ∼= F (x).

ii) Know F [α] ∼= F [x]/〈p〉. 〈p〉 is maximal because p is irreducible hence F [x]/〈p〉 is a field.
Therefore since F [α] is already a field, so F (α) = F [α].

Example 28.8. • Q(i) = Q[i] ∼= Q[x]/〈x2 + 1〉

• Let f(x) = x3 + x2 − 1 ∈ Q[x] which is irreducible. Let α be a root of f . Consider Q[α] =
{r + sα + tα2 : r, s, t ∈ Q}. E.g. try β = α2 + 1 ∈ Q[α]. Apply Euclidean algorithm to
f(x) and g(x) = x2+1 which gives 1

5
(x−2)f(x)+ 1

5
(−x2+x+3)g(x) = 1 in Q[x]. Substituting

x = α: 0 + 1
5
(−α2 + α + 3)β = 1. So β−1 = 1

5
(−α2 + α + 3) ∈ Q[α]. This kind of calculation

shows that Q(α) = Q[α]. i.e. Q[α] is a field.

Definition 28.9 (Degree). Let E/F be a field extension. Then E is a vector space over F . The degree of
E/F is [E : F ] = dimF E. We say E/F is a finite extension if [E : F ] <∞.

Example 28.10. [C : R] = 2, [R : Q] = uncountable ∞.

Proposition 28.11. Any finite extension is algebraic.

Proof. Let E/F be finite, say dimn ≥ 1. Let α ∈ E. Then 1, α, α2, . . . , αn must be linearly
dependent over F . i.e. there exists c0, . . . , cn ∈ F not all 0 such that c0 + c1α + · · ·+ cnα

n = 0. i.e.
p(α) = 0 where p(x) = c0 + c1x+ · · ·+ cnx

n ∈ F [x]. So α is algebric over F .

Theorem 28.12 (The Tower Law). Let K/E and E/F be finite. Then K/F is finite and [K : F ] = [K :
E][E : F ].

Proposition 28.13. Suppose α ∈ E is algebraic over F . Then [F (α) : F ] = deg p where p is a minimal
polynomial of α over F .

Example 28.14. Q ⊆ Q(
√

2) ⊆ Q(21/4). What is [Q(21/4) : Q]?

• [Q(
√

2) : Q] = 2 because minimal polynomial of
√

2/Q is x2 − 2 has degree 2.

• [Q(21/4) : Q(
√

2)] = 2 because minimal polynomial of 21/4 over Q(
√

2) is x2 −
√

2.

Then by the tower law, [Q(21/4) : Q] = [Q(21/4) : Q(
√

2)][Q(
√

2) : Q] = 2 · 2 = 4.

Theorem 28.15 (Eisenstein’s Criterion). LetR be a UFD,K = K(R). Let f = f0+f1x+· · ·+fnxn ∈ R[x].
Suppose there exists a prime p ∈ R such that p | f0, . . . , p | fn−1 but p - fn and p2 - f0. Then f is irreducible
in K[x].

Theorem 28.16 (Splitting Fields). Let F be a field, f ∈ F [x], f 6= 0. Then there exists a field extension
E/F such that f(x) is a product of linear factors in E[x], i.e. f(x) = c(x−α1) · · · (x−αn) for α1, . . . , αn ∈ E.
The subfield F (α1, . . . , αn) generated by F and the α’s is called a splitting field for f(x) over F .

Proof. Induction on n = deg f . For n = 1, just take E = F . Suppose n > 1, let p ∈ F [x] be an
irreducible factor of f . Let K = F [x]/〈p〉. Then K is a field (since p is irreducible), K contains a
root of p namely α = x+ 〈p〉 ∈ K. Also F is a subfield of K. In K[x] we have f(x) = (x−α)g(x) for
g ∈ K[x], deg g < deg f . By induction, there is an extension E of K such that g factors into linear
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factors in E[x]. So does f .

Example 28.17. Splitting field of x3 − 2 over Q.

We already know in C: x3 − 2 = (x − 21/3)(x − 21/3ω)(x − 21/3ω2) where ω = e2πi/3 so
splitting field is Q(21/3, ω).

x3−2 is irreducible in Q[x] by Eisenstein’s Criterion. Let K = Q[x]/〈x3−2〉 and α = x+〈x3−2〉 ∈ K.
So α3 = (x + 〈x3 − 2〉)3 = x3 + 〈x3 − 2〉 = x3 − 2 + 2 + 〈x3 − 2〉 = 2 + 〈x3 − 2〉 = 2. Then
x3 − 2 = (x− α)(x2 + αx+ α2) in K[x].

Q: is x2 + αx+ α2 irreducible in K[x].

Proof. Suppose not. Say β is a root in K. i.e. β2 + αβ + α2 = 0. Let ω = β/α.
Then ω2 + ω + 1 = 0, but x2 + x + 1 is irreducible over Q. Thus [Q(ω) : Q] = 2 but
ω ∈ K and [K : Q] = 3(= deg(x3 − 2)) but this is a contradiction by the Tower Law,
[K : Q] = [K : Q(ω)][Q(ω) : Q].

Now define E = K[x]/〈x2 + αx+ α2〉, then E is a field. Let β = x+ 〈x2 + αx+ α2〉. so β ∈ E is a
root of x2 + αx+ α2 get x−3 = (x− α)(x− β)(x− α2/β) = (x− α)(x− ω)(x− ω2α) with ω = β/α.

Proposition - Definition 28.18 (Algebraically Closed). A field F is algebraically closed if one of the
following equivalent conditions hold:

i) Any non-constant p ∈ F [x] has a root in F .

ii) There are no non-trivial algebraic extensions of F .

Theorem 28.19. Let F be a field. There exists a “smallest” extension F̃ /F which is algebraically closed,
called the algebraic closure of F . It is unique up to isomorphism.

29 Finite Fields

Definition 29.1 (Characteristic of a Ring). Let R be a ring. Consider the homomorphism φ : Z→ R;n 7→
1 + 1 + · · ·+ 1(n times). Then kerφ E Z = 〈n〉 for some n. This is called the characteristic of R, charR.

Example 29.2. charR = 0, charZ = 0, char(Z/nZ) = n.

Definition 29.3. A finite field is a field with only finitely many elements.

Example 29.4. Z/pZ if p is prime is a finite field.

Proposition 29.5. Let F be a finite field. Then |F | = pn for some prime p, integer n ≥ 1. p is the
characteristic of F . F contains Z/a/bZ as a subfield.

Proof. Let n = charF . Since F finite, n 6= 0.

Claim. n is prime.

Proof. If n = n1n2 then 0 = φ(n) = φ(n1)(n2). Since F is a field, either φ(n1) = 0 or
φ(n2) = 0.
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Call p = n. Im(φ) = {0, 1, 1+1, . . . , p−1}. By First Isomorphism Theorem, Imφ ∼= Z/ kerφ = Z/pZ.
i.e. F contains Z/pZ as a subfield. Also F is a vector space over Z/pZ of finite dimension say t, so
|F | = pt, i.e. can write elements uniquely in form c1b+ · · · + cnbn where ci ∈ Z/pZ and bi forms a
basis for F over Z/pZ.

Theorem 29.6 (Existence of Finite Fields). Let p ≥ 2 be a prime, let n ≥ 1. Then there exists a field F
with |F | = pn.

Proof. Let q = pn. Let g(x) = xq − x ∈ Fp[x]. From the previous chapter, there eixsts a field
extension E/Fp such that g(x) splits into linear factors in E[x]. Define F = {α ∈ E : g(α) = 0} =
{α ∈ E : αq = α}. Know |F | ≤ q, since g(x) has at most q roots.

Claim. g(x) has no repeated roots.

Proof. If g(x) = (x − a)2h(x) for some α ∈ E, h ∈ E[x]. Then g′(x) = 2(x − α)h(x) +
(x− α)2h(x). So g′(α) = 0. But g′(x) = qxq−1 − 1 = −1, contradiction.

Therefore |F | = q. Need to show F is a subfield of E. If α, β ∈ F then (αβ)q = αqβq = αβ so
αβ ∈ F .

(α + β)p = αp + βp

(α + β)p
2

= αp
2

+ βp
2

...

(α + β)q = αq + βq = α + β

so α + β ∈ F and closed under addition and multiplication. Inverses α−1 = αq−2 because αq−1 = 1
if α 6= 0.

Theorem 29.7 (Existence of Generators). Let F = finite field order q = pn. Then F ∗is cyclic of order
q − 1.

Example 29.8. F4 = F2(α) with α2 + α + 1 = 0. We have α0 = 1, α1 = α, α2 = α + 1 so F∗4 = 〈α〉.

Lemma 29.9. Let m ∈ Fp[x] be irreducible with deg n ≥ 1. Let q = pn then m | xq − x.

Theorem 29.10. Let F, F ′ be finite fields. |F | = |F ′| then F ∼= F ′.

30 Ruler and Compass Constructions

Definition 30.1 (Admissible Towers). Let F = Q(S0) = Q( all x, y coordinates of points in S0) (=
Q for some S0). An admissible tower is a tower of extensions: F = E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ En where
Ej ⊆ R, [Ej : Ej−1] = 2 for all j.

Theorem 30.2. Let (x, y) ∈ Si. Then there exists an admissible tower E0 ⊆ · · · ⊆ En such that x, y ∈ En.

Lemma 30.3. If F0 ⊆ · · ·Fn and E0 ⊆ . . . En are admissible then there exists admissible K0 ⊆ · · · ⊆ Kr

such that Fn ⊆ Kr and Em ⊆ Kr.

Corollary 30.4. Let (x, y) ∈ R2 be constructible from S0. Then [F (x, y) : F ] = 2k for some k.
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