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Chapter 1

Introduction

1.1 Definitions

A graph G = (V| E) is a set V of vertices and a set E of unordered pairs of distinct vertices, called edges.
Write vw or {v,w} for the edge joining v and w, and say that v and w are neighbours or that they are
adjacent.
In these notes, unless otherwise stated, graphs are:

e finite: |V| € N.

e labelled: vertices are distinguishable, usually V' = [n] := {1,2,...,n} for some n € N.

e undirected: edges are unordered pairs of vertices.

e simple: no loops {v,v} or multiple edges (since F is not a multiset).

A graph G with vertex set {vy,...,v,} has adjacency matrix A(G) = (a;;) where

Q45 .
0 otherwise.

B {1 if vv; € E,

A(G) is a symmetric n x n 0-1 matrix with zero diagonal.

The trivial graph has at most one vertex. Hence it has no edges.

A subgraph of a graph G = (V, F) is a graph H = (W, F') such that W CV and F C E.

We say that H is an induced subgraph if for all v,w € W if vw € E(G) then vw € E(H). Write
H = G[W], and say that H is the subgraph of G induced by the vertex set W.

The number of vertices of G, written |G| = |V (G)], is called the order of G. The number of edges of G,

sometimes written ||G|| = |E(G)|, is called the size of G.

Two graphs G = (V, E) and H = (W, F') are isomorphic if there exists a bijection ¢ : V' — W such that
¢(v)p(w) € F if and only if vw € E. The map ¢ is called a graph isomorphism or isomorphism.
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1.2 The Degree of a Vertex

If v € e where v is a vertex and e is an edge, then we say that e is incident with v. The degree dg(v) of
vertex v in a graph G is the number of edges of G which are incident with v. A vertex of degree 0 is an
1solated vertex.

Let Ng(v) be the set of all neighbours of v in G, then d(v) = |N(v)|.
Lemma 1.2.1 (The Handshaking Lemma). In any graph, G = (V, E),

> d(v) =2|E].

veV
Let 0(G) = min,ey d(v) be the minimum degree in G, and A(G) = max,cy d(v) be the maximum degree
in G.
1.2.1 Some Special Graphs

A graph is k-partite if there exists a partition of its vertex set
V=VviuWLu-.--V,

into k£ nonempty disjoint subsets (parts) such that there are no edges between vertices in the same part.

The complete graph on r vertices, denoted K., has all (g) edges present. The complete bipartite
graph K, s has r vertices in one part of the vertex bipartition, s vertices in the other, and all rs present.

A graph is regular if every vertex has the same degree. If every vertex of a graph has degree d then we
say that the graph is d-regular.

The complement of a graph G is the graph G = (V,E) where vw € E if and only if vw ¢ E. Note that
K, is the graph with n vertices and no edges.

If G=(V,E) and X C V then G — X denotes the graph obtained from G by deleting all vertices in X
and all edges which are incident with vertices in X. If F* C E then G — F denotes the graph (V, E — F)
obtained from G by deleting the edges in F.

1.3 Paths and Cycles

A walk in the graph G is a sequence of vertices vgvivs - - - vy such that v;v;,1 € E fori=0,1,... . k— 1.
The length of this walk is k. The walk is closed if vy = vy.

An Euler tour is a closed walk in a graph which uses every edge precisely once. A graph is Eulerian if it
has an Euler tour.

Theorem 1.3.1 (Euler, 1736). A connected graph is Eulerian if and only if every vertex has even degree.

A walk is a path if it does not visit any vertex more than once. A path is a sequence of disinct vertices,
with subsequence vertices joined by an edge. A path vov;...v, with k edges is called a k-path and has
length k.



If k>3 and P = vgvy - --vg_1 is a path of length £ — 1 then C' = P + vyvi_1 is a cycle of length k, also
called a k — cycle. It is a closed walk which visits no internal vertex more than once.

An edge which joins two vertices of a cycle C'; but which is not an edge of C, is called a chord. An
induced cycle is a cycle which has no chords.

Proposition 1.3.2. Every graph G contains a path of length 6(G) and a cycle of length at least §(G) + 1,
if 0(G) > 2.

Proof. Let P = xqz;...x; be the longest path in G. By maximality of P, all neighbours of z lie
on P. Hence §(G) < d(zx) < k = |{o, 1, ..., 2k_1}|, which proves the first statement. Let x; be the
smallest-indexed neighbour of zy in P. Then C' = xx;z;41 .. . Tx_12k is a cycle of length > §(G) + 1
because C' contains d(z) > 0(G) neighbours of z;, as well as zj. O

The minimum length of a cycle in G is the girth of G, denoted by ¢(G).

Given z,y € V, let dg(z,y) be the length of a shortest path from x to y in G, called the distance from x
to y in G. Set dg(x,y) = oo if no such path exists.

We say that G is connected if dg(z,y) is finite for all z,y € V.

Let the diameter of G be diam(G) = max, yev da(z, y).

Proposition 1.3.3. Every graph G which contains a cycle satisfies g(G) < 2diam(G) + 1.

Proof. Let C be a shortst cycle in G, so |C|] = g¢(G). For a contradiction, assume
g(G) > 2diam(G) + 2.

Choose vertices x, y on C with de(x,y) > diam(G) +1. In G the distance dg(x, y) is strictly smaller,
so any shortest path P from z to y in G is not a subgraph of C'. But using P together with the
shorter arc of C' from z to y gives a closed walk of length < |C'|. This closed walk contains a shorter
cycle than C' which is a contradiction. O

. .

1.4 Connectivity

A maximal connected subgraph of G is called a component (or connected component) of G.

Proposition 1.4.1. The vertices of a connected graph can be labelled v, vs, ..., v, such that G,, = G
and G; = G[vy,...,v;] is connected for all i.

Proof. Choose wv; arbitrarily. Now suppose that we have labelled wvq,...,v; such that
G, = Glvy,...,v;] is connected for all j =1,... 4.

If i < n then G; # G, so there exists some v; € {v1,...,v;} with aw ¢ {v1,...,v;} in G. (Otherwise
G; # G is a component of G, impossible as G is connected.) Let v;1; = w, then G411 = Glvy, ..., ;1]
is connected. This completes the proof, by induction. O

Let A, B C V be sets of vertices. An (A, B)-path in G is a path P = 2z - - - 24, such that



Let A,BCV and let X C VU F be a set of vertices and edges. We say that X separates A and B in G
if every (A, B)—path in G contains a vertex or edge from X.

Note that we do not assume that A and B are disjoint and if X separates A and B then AN B C X.

We say that X separates two vertices a,b if a,b ¢ X and X separates the sets {a}, {b}.

More generally, we say that X separates G, and call X a separating set for GG, if X separates two vertices
of G. That is, X separates G if there exist distinct vertices a,b ¢ X such that X separates a and b.

If X = {z} is a separating set for GG, where x € V, then we say that = is a cut vertex.
If e € E and G — e has more components than GG then e is a bridge.

The unordered pair (A, B) is a separation of G if AU B = V and G has no edge between A — B and
B — A. The second conditions says that A N B separates A from B in G. If both A — B and B — A are
nonempty then the separation is proper. The order of the separation is |[A N B].

Definition. Let & € N. The graph G is k-connected if |G| > k and G — X is connected for all
subsets X C V with |X| < k.

The connectivity x(G) of G is defined by

k(G) = max{k : G is k-connected}.

So, kK(G) = 0 iff G is trivial or G is disconnected. Also, x(K,) =n — 1 for all positive integers n.

Definition. Let ¢ € N and let G be a graph with |G| > 2. If G — F is connected for all F* C F
with |F| < £ then G is (-edge-connected.

The edge connectivity A\(G) is defined by
AMG) = max{l : G is (-edge-connected }.

Proposition 1.4.2. If |G| > 2 then x(G) < AG) < §(G).

Theorem 1.4.3 (Mader, 1973). Let k be a positive integer. Every graph G with average degree at least
4k has a (k 4 1)-connected subgraph H with

[E(H)| _ [E(G)]

v~ v "

Proof. We write |G| instead of |V (G)|. Let v = % > 2k. Consider subgraphs G’ of G which
satisfy:
|G'| > 2k and |E(G)| > (|G| — k). (1.1)

such graphs G’ exists as G satisfies 1.1. (Average degree of G is 2AB@G)] - > 4k, so

|G|
Gl > 4k and 4(IG| - k) = | E(@)| Y2 < |E(@)].)

Now let H be a subgraph of G of smallest order which satisfies 1.1. We continue the proof by
proving three claims.




Claim 1. If G’ satisfies 1.1 then |G'| > 2k.
Proof. If G’ satisfies 1.1 and |G'| = 2k then |E(G')| > v(|G'| — k) > 2k* > (‘G2 |), contradiction.

Claim 2. S(H) > 7.
Proof. For a contradiction, suppose that S(H) < . Let G’ be obtained from H by deleting a vertex
of degree < . Then |G'| < |H| and G’ satisfies 1.1, which is a contradiction. To see this, check:

|G| = |H|—1> 2k, by Claim 1, and
|[E(G"| > |E(H)| —~v >~(|H|—k—1), as H satisfies 1.1
= (6]~ R)
Hence S(H) > 7. It follows that |H| > 7. Thus,

E(H)] _ (15| - k)
] H

(as H satisfies 1.1)

Claim 3. H is (k + 1)-connected.
Proof. By Claim 1, |H| > 2k+1 > k+2 as k > 1. So H is large enough. For a contradiction,
suppose that H is not (k+1)-connected. Then H has a proper separation {U, Us} of order at most k.

Let H; = H[Uj] for i = 1,2. Since any vertex v € Uy — Uy has dg(v) > S(H) > v (by Claim 2), and
all neighbours of v in H belong to Hy, we have |H;| > v > 2k. Similarly, |Hy| > 2k. By minimality
of H, neither H; nor Hj satisfies 1.1. Hence |E(H;)| < v(|H;| — k) for i = 1,2. But then

|E(H)| < [E(Hy)| + |E(Hy)|
< y([H| + |Ha| = 2k)
<~(|H| - k), (by inclusion-exclusion)

since |Uy U Us| < k. This contradicts 1.1 for H. So H is (k + 1)-connected, completing the proof of
Claim 3 and of the theorem. O

1.5 Trees and Forests

A graph with no cycles is a forest (also called an acyclic graph). A connected graph with no cycles is a
tree.

Theorem 1.5.1. The following are equivalent for a graph 7"
(i) T is a tree;
(ii) Any two vertices of T" are linked by a unique path in T’
(iii) T is minimally connected: that is, T'is connected but 7" — e is disconnected for every e € E(T);

(iv) T is mazimally acyclic: that is, T is acyclic but T + zy has a cycle for any two nonadjacent vertices
r,yinT.

Corollary 1.5.2. If G is connected then GG has a spanning tree.
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Proof. Let be a connected graph and let H be a minimal connected spanning subgraph of G.
(Note H exists as G is a connected spanning subgraph of itself.) By theorem 1.5.1, H is a tree. [

Corollary 1.5.3. The vertices of a tree can be labelled as vy, ..

unique neighbour in {vq,...,v;_1}.

~

Proof. We use the labelling from Proposition 1.4.1. This labels the vertices of a given tree G
as vi,...,v, such that Gvy,...,v,] is connected. Let ¢ > 1 then Glvy,...,v;] is a tree. Note
Gluy, ..., vi41] is connected by Proposition 1.4.1, so v;41 has at least one neighbour in Glvy, ..., v].

For a contradiction, suppose that v; ;1 has two neighbours z and w in Glvy, ..., v;]. There is a (unique)
path P in Gluvy, ..., v;] between z and w, and this path does not visit v;;1. Hence PU{zv; 41, wv;qq}
is a cycle in GG, contradiction. O]

Corollary 1.5.4. A connected graph with n vertices is a tree if and only if it has n — 1 edges.

Proof. Suppose that G is a tree on n vertices. The result is true when n = 1. Now suppose the
result is true when n = k. Let G be a tree on k + 1 vertices. Let v be a leaf in G (e.g .take an
end vertex of a longest path in G.) Then G — v is a tree on k vertices, so G — v has k — 1 edges
(inductive hypothesis). Therefore G has k edges as v has degree 1. This concluses the proof, by
induction.

Conversely, suppose that Gis connected with n vertices and n—1 edges. Then G contains a spanning
tree H, by an earlier corollary. Then H has exactly n — 1 edges, since it is a tree on n vertices.
Hence H = GG, so G is a tree. O]

Corollary 1.5.5. If T"is a tree and G is any graph with 6(G) > |T'| — 1 then G has a subgraph isomorphic

to T.

., U, so that for ¢ > 2, vertex v; has a




Chapter 2

Matchings and Hamilton Cycles

Two edges in a graph are called independent if they have no vertices in common.
A set M of pairwise independent edges in a graph is called a matching.

Given G = (V, E) and U C V, say that M C E is a matching of U if M is matching and every vertex in
U is incident with an edge of M. We say that the vertices in U are matched by M, and t hat the vertices
not incident with any edge of M are unmatched.

A matching M is a maximal matching of G if M U {e} is not a matching for any e € E — M.
A maximum matching of G is a matching of G such that no set of edges with size greater than |M| is
a matching.

A perfect matching of G is a matching of G which matches every vertex of G. Note: a perfect matching
is a l-regular spanning subgraph of GG also called a 1-factor of G.

A k-factor is a k-regular spanning subgraph. A 2-factor in a graph is the union of disjoint cycles which
covers all the vertices.

2.1 Matchings in Bipartite Graphs

Let G = (V, E) be a bipartite graph with vertex bipartition V' = AU B. Here A, B are nonempty disjoint
sets. We use the convention that all vertices called a,a’,a”, ... belong to A and similarly for B.

Let M be matching in G. A path in G which starts at an unmatched vertex of A and contains, alternately,
edges from £ — M and from M, is called an alternating path with respect to M.
If an alternating path P ends in an unmatched vertex of B then it is called an augmenting path.

Definition 2.1.1. A set U C V is a cover (or vertex cover) of G if every edge of GG is incident with a
vertex in U.

Theorem 2.1.2 (Konig, 1931). Let G be a bipartite graph. The size of a maximum matching in G is
equal to the size of the minimum vertex cover of G.

Proof. Let U be a cover in G and let Mbe a maximum matching. Then |U| > |M| as we must
cover every edge of M. Hence it suffices to construct a cover U of G with |U| = |M]|.

We build U be choosing one vertex from each edge of M to place into U, as follows:




o If ab € M and some alternating path in G with respect to M ends in b. Then put b into U
otherwise put a into U.

Let ab € E. If ab € M then a € U or b € U by definition of U. Now assume abb ¢ M. Since M is
maximum, there exists a'b’ € M with a = a' or b = ¥'. If a is unmatched in M then b = b’ for some
a'b € M. Hence ab is an alternating path ending in b = ¥/, so we chose O’ to go into U from the
edge a'b € M. So the edge ab is covered by U in this case.

Hence we assume that a = o’ for some a’t/ € M. If a = a’ € U then we are done. Otherwise b’ € U,
so there is an alternating path P ending in '. Then P = a;b1asby ..., and we have three cases:

(i) P does not include a or b. Then Pab = ajasy...bab is an alternating path in G with respect
to M. By maximality of M, b is matched or else we have an augmenting path. Hence b € U
as b is the chosen vertex from its matching edge.

(ii) If bison P beforea, orb € Pand a ¢ P, then P = ajbjay...b... 0. Then welet P’ = a1b; ...b.
This is an alternating path ending in b, so finish proof as case above.

(iii) If a is on P before b, or a € P and b ¢ P. Then P = a1b;...a,b,...b" and we take P’ =
a1by . ..ab. This is an alternating path ending in b, so finish proof as case above.

This proves U is a cover of G and since |U| = |M|, this completes the proof. O

For a subset S C A, let N(S) =
in S.

ves IV (v) be the set of vertices in B which are neighbours of some vertex

Theorem 2.1.3 (Hall, 1935). Let G be a bipartite graph. Then G contains a matching of A if and only if
IN(S)| > |S| forall SC A. (2.1)

Proof. We have that this condition is necessary. Now suppose that (2.1) holds. For a contradiction,
suppose that G has no matching of A. Then Ko6nig’s Theorem (Theorem 2.1.2) says that G has a cover
U with |U| < |A]. Suppose that U = A’UB’ with A’ C A and B’ C B. Then |A'|+|B’| = |U| < |4],
so |B'| < |A| —|A'| =|A — A’|. Since U is a cover, G has no edges from A — A’ to B — B’. Hence
N(A—A) C B and so [N(A— A")| < |B'| <|A— A’|. This contradicts Hall’s condition 2.1 for
S =A— A'. Hence G contains a matching of A. ]

Corollary 2.1.4. Let G be a bipartite graph and d € N. If |[N(S)| > |S| — d for all S C A then G has a
matching of size |A| — d.

Proof. Add d new vertices to B and join each of them by an edge to each vertex of A. Then for
all S C A, in the new graph G’, |[Ne/(S) > |S| — d + d = |S|. Hall’s condition is satisfied in G’.
Therefore there is a matching M in G’ which matches all of A. At least |A| — d edges in M are edges
of G. O

Corollary 2.1.5. If G is a k-regular bipartite graph then G has a perfect matching.

Proof. Assume k > 1. Since G is k-regular, |E(G) = k|A| = k|B|, so |A| = |B|. Hence it suffices
to prove that G contains a matching of A. Every set S C A is joined to N(S) by a total of k|S]
edges. These edges are a subset of the k|N(S)| edges incident with |N(S). Hence k|S| < k|N(S)|
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and diving by k shows that Hall’s condition holds. Thus, G’ has a matching of A. m

Corollary 2.1.6. Every regular graph of positive even degree has a 2-factor.

Proof. Let G be any 2k-regular graph, & > 1. Without loss of generality, suppose that G is
connected (or apply this argument to each component). By Theorem 1.3.1, G has an Euler tour
vov1 - . . U_1U; where v; = v, €; = v;v;11 € E(G) using each edge exactly once.

Replace each vertex v € V with a pair of vertices v—, v, and replace every edge e; = v;v;41 by the
edge v; v, ;. The resulting graph G’ is a k-regular bipartite graph. Hence by Corollary 2.1.5, G’ has
a perfect matching (1-factor). Collapse every vertex pair (v, v") back into a single vertex v, for all
v € V. The 1-factor of G’ becomes a 2-factor of G. O]

2.2 Hamilton Cycles

A Hamilton cycle is a connected 2-factor. That is, it is a cycle which includes every vertex.

Say G is Hamiltonian if it contains a Hamilton cycle. A Hamiltonian graph G must be connected with
minimum degree §(G) > 2.

Theorem 2.2.1 (Dirac, 1952). Every graph with n > 3 vertices and with minimum degree at least n /2
has a Hamilton cycle.

Proof. Let G be a graph with minimum degree > n/2 and n > 3 vertices. Then G is connected, as
otherwise the degree of any vertex in the smaller component must be < n/2. Let P = zg...z; be a
longest path in G. by maximality, all neighbours of zy and x, lie on P. So at least n/2 of the vertices
xg, ..., Tx_1 are adjacent to x and at least n/2 of these same vertices satisfy xoz; 11 € E(G). By the
pigeonhole principle, as k < n, there exists i € {0,...,k — 1} with xoz;41, z;2x € E(G). This gives
a cycle xory ... x;w ... x;0179. We claim this is a Hamilton cycle. If not then, as G is connected,
there is some u ¢ C with a neighbour v € C. Then we can start at u, go tov then go around C' (in
some direction) and stop just before we reach v again (i.e. stop at z € N¢(v)). This gives a path
which is longer than P, contradiction. O]

2.3 Matchings in General Graphs

Given a graph G, let Cg be the set of its components and let ¢(G) denote the number of odd components
(connected components having an odd number of vertices).

Theorem 2.3.1 (Tutte, 1947). A graph G has a perfect matching if and only if

q(G—95)<|S| forall SCV(G). (2.2)

Proof. We have seen that the condition (2.2) is necessary: if G has a perfect matching then (2.2)
holds. Now suppose that G has no perfect matching. We want to find a “bad” set Sy which fails
condition (2.2). If |G| is odd then, Sy = () is bad. So assume |G| is even.

Claim 1. If ¢ is obtained from G by adding edges and Sy C V' is bad for G’ then S is bad for G.
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Proof. If Sy bad for G’ then ¢(G — Sp) > |Sp|. But each odd component of G' — S is a disjoint
union of components of G — S, at least one of which must be odd. So ¢(G — S) > ¢(G' — 9).

Hence by Claim 1, we can assume that G has no perfect matching but adding any edge to G gives
a graph G’ which has a perfect matching.

Claim 2. S is a bad set for G if and only if all components of G — S are complete and every vertex
in S is adjacent to all other vertices in G.

Proof. For proof, call the second half of the claim (*). If S is bad for G but does satisfy (*) then we
can add an edge to G to get a graph G’ with S still bad for G'. This contradicts our assumption on
the maximality of G. Conversely suppose S satisfies (*) but S is not bad. Then we can form a per-
fect matching since |G| is even. This is a contradiction as G has no perfect matching. Hence S is bad.

Define Sy = {v € V : dg(v) = n — 1} to be the set of all vertices v in G which are adjacent to every
other vertex w # v.

Claim 3. S is bad.

Proof. We need to show that Sy satisfies (*). For a contradiction, suppose that Sy does not satisfy
(*). Then G — Sy has a component K which is not complete. Let a,a’ € V(K) with ad’ ¢ E(G). Fix
a shortest path from a to @’ in K which starts abc...a’. Such a path has length > 2 and ac ¢ E(G).
Note b € K, so b € Sy, so there is some d € V with bd ¢ E. By maximality of GG, there is a perfect
matching M; in G + ac and a perfect matching Ms in G 4 bd. Take a maximal path P in G, starting
at d with an edge from M, and taking alternately edges from M; and M,. Say P =d...v.

e If the last edge of P is in M; then v = b or we could extend P. Let C' = P + bd (cycle in
G + bd).

e If the last edge of P is in Ms then v € {a,c} as the M; edge incident with v must be ac. Let
C be the cycle d. .. vbd.

In each case, C' is an alternating (even length) cycle in G + bd which contains bd. Form M} from
M, by replacing My N C' by C' — M,. This gives a perfect matching of G, contradiction. Hence 5
satisfies (*), so Claim 3 holds and the proof is complete. O

Corollary 2.3.2 (Petersen, 1891). Every bridge cubic (3-regular) graph has a perfect matching.

Proof. Let G be a bridgeless cubic graph. We prove that G satisfies Tutte’s condition. Let
S C V(@) be given and consider an odd component C' of G — S. The sum of the degrees of vertices
in C is 3|C|, which is an odd number. Every edge with both end vertices in C' contributes an even
number to this sum. Hence the number of edges from C' to S is odd.

As G has no bridge, there must be at least 3 edges from S to C'. Therefore the number of edges
from S to G — S is at least 3¢(G — S). But the number of edges from S to G — S is bounded
above by the sum of the degrees of vertices in S, which is 3|S| as G is cubic. Hence 3¢(G — 5) <
# edges from S to G - S < 3|S| and thus ¢(G — S) < |S|. Therefore by Tutte’s Theorem, G has a
perfect matching. m
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Chapter 3
The Probabilistic Method

This chapter assumes knowledge of elementary probability knowledge. Content from first year is sufficient.
Example 3.0.1. Let Q be the set of all graphs on the vertex set {1,2,...,n}. Then |Q] = 2(2). Define
m(G) = 2(3) for all G € . This is the uniform model of random graphs.

Lemma 3.0.2. The expected number of edges in a uniformly chosen graph on the vertex set {1,2,...n}

is 5(5)
IS2 5)-

~ a

Proof. (From Definition) For 0 < m < (g) = N, there (Z ) are exactly of graphs on vertex set

{1,...,n} with m edges. Let X be the number of edges in the random graph. Then

oy

S

I
NE

.

X=m)-m

(by the binomal theorem)

Let A C Q be an event. The indicator variable 4 for A C Q is

1 ifzeA
I4(2) =
A(z) {O otherwise.

Definition 3.0.3 (Linearity of Expectation). Let X, ..., X} be random variables on 2 and let ¢y, ..., ¢ €
R. Define the random variable X = ¢; X; + -+ 4+ ¢, X,. Then

E[X] = Cl]E[Xl] + CQE[XQ] + -+ Ck]E[Xk]

13



Definition 3.0.4 (Markov’s Inequality). Suppose that X : Q@ — [0, 00) is a nonnegative random variable
on ) and let £ > 0. Then .

[X]
Pr(X > k) < 5

In particular, if X is a nonnegative integer-valued random variable then
Pr(X #0) < E[X].

Let £ > 2 be an integer. Events A;,..., A; in {2 are mutually independent if for all j, ¢;,...,¢; with
2§]§k:and1§€1<€2<<@§k,

Pr (ﬂ Agz) = HPI‘(A@Z)

Lemma 3.0.5. Let Q be the set of all subsets of some given set S, where |S| = n. Define a random set
X C S by setting Pr(z € X) = 3, independently for each 2 € S. Then Pr(X = A) = 27" for all A C S, so
this gives the uniform probability space on €2.

Proof. Fix A C Q). Then

Pr(X =A) = H Pr(heads) - H Pr(tails) (using independence)
z€A ¢ A

HRON
e

as claimed. O

. J

Theorem 3.0.6 (Alon & Spencer, Theorem 2.2.1). Let G be a graph with n vertices and m edges. Then
G contains a bipartite subgraph with at least m /2 edges.

Proof. Let Q be the set of all subsets of V(G). Then |2| = 2". Consider the uniform probability
space on ). Let A CV be a randomly chosen element of {2 and define B =V — A. Call zy € E(G)
a crossing edge if exactly one of z,y belongs to A. Let X be the number of crossing edges. Finally,
for each edge e € E(G) define the indicator variable

¥ 1 if e is a crossing edge,
10 otherwise.

Then X = ZeeE(G) X.. For any e = zy € E(G), we have,
Pr(re Aand y ¢ A) =Pr(x € A)Pr(y € A) (using independence)
1 1 1
= — X = = —,
2 2 4
Therefore

EX.=Pr((r€Aandy ¢ A)or (r ¢ Aand y € A))

=Pr(r€ Aand y ¢ A) +Pr(x ¢ Aand y € A) (events are disjoint)
IR
442

14



Hence, by linearity of expectation,

m
EX = EX,=—.
> :
e€cE(G)

Thus there exists a fixed set A9 C V(G) which has at least % crossing edges. The corresponding
bipartition (Ao, V(G) — Ap) defines a bipartite subgraph consisting of the > % crossing edges. [

J

.

An independent set in a graph G is a subset U C V such that if v,w € U then vw € E(G). Let o(G)
be the size of a maximum independent set in GG, called the independence number.

Theorem 3.0.7. Let GG have n vertices and nd/2 edges, where d > 1. Then a(G) > 35. Note d, is the
average degree of G.

Proof. Define the random subset S C V(G) by Pr(v € S) = p, independently for all v € V. Here
p € [0, 1] which we will fix later.

Let X = |S| and let Y be the number of edges of G with both endvertices in S. Then EX = pn.
For e € E(QG) let Y, be the indicator variable for the event e C S. Then for every e = zy € E(G),
EY, =Pr(z € Sand y € 5)
=Pr(z € 5) -Pr(ye9) (by independence)
Therefore, by linearity of expectation and the fact that Y = 3" __ BG) Ve have
EY = EY, = %dpQ.
(@)

By linearity of expectation,

E(X—Y):EX—]Eyzpn—ﬁ%d.

Want to choose p to maximise this, so p = 1 and p € [0,1]. Substituting gives E(X —Y) = 2.

d
Hence there exists a fixed set Sy C V(G) with |Sp| — (7 edges inSy) > g5. Delete one vertex from
each edge within Sy to give a set S* of at least Jj; vertices which is an independent set. O

15



Chapter 4

Graph Colourings

A vertex colouring of a graph G = (V, E) is a function ¢ : V' — S such that c¢(u) # c¢(v) whenever
uv € E. Here S is the set of available colours, usually S = {1,2,..., k} for some positive integer k.

A k-colouring of G is a colouring ¢ : V' — {1,2,...,k}. Often we want the smallest value of k for which
a k-colouring of G exists. This smallest value of k is called the chromatic number of G, denoted x(G).

If x(G) =k then G is said to be k-chromatic.
If x(G) <k then G is said to be k-colourable.

The set of all vertices in G with a given colour under ¢ is called a colour class. Each colour class is an
independent set. k-colouring is a partition of V(@) into k independent sets.

A clique in a graph G is a complete subgraph of G. The order of the largest clique in G is called the
clique number of G, denoted w(G).

Fact: x(G) > w(G) and x(G) > n/a(G).

An edge colouring of G is a map ¢ : E — S such that c¢(e) # ¢(f) whenever e and f share an endvertex.
If S={1,2,...,k} then cis a k-edge-colouring and G is k-edge-colourable.

Let x'(G) be the smallest positive integer k for which G is k-edge-colourable. We call x'(G) the chromatic
index of G.

A colour class in an edge colouring is a matching of G. Hence an edge colouring displays E(G) as a union
of disjoint matchings.

The line graph, denoted L(G), has vertex set F(G) and e, f € E(G) form an edge of L(G) if and only
if e, f share an endvertex in G. Every edge-colouring of G is a vertex colour of L(G) and vice-versa. So

X (G) = X(L(G)).

4.1 Vertex Colourings

Proposition 4.1.1. If graph G has m edges then x(G) < 2 + {/2m + 1.

16



Proof. Fix a k-colouring of G with k = x(G) colours. Then Ghas at least one edge between any
two distinct colour classes, or we could merge them to give a colouring of G with < k — 1 colours.

Hence m > (’;) = 1(k)(k — 1) then solve for k to complete the proof. O

Greedy Algorithm Given a graph G, fix an ordering vy, vs,...,v, on the vertices of G and colour
them one by one in this order using the first available colour (least positive integer) as you go along. Since
v; has at most A(G) neighbours, this produces a k-colouring of G with k < A(G)+1 = x(G) < A(G)+1.

Fact: x(G) = A(G) + 1 if G is a complete graph or an odd cycle.

Theorem 4.1.2 (Brooks, 1941). Let G be a connected graph. If G is neither complete nor an odd cycle
then x(G) < A(G). In fact we will prove the following restatement of Brooks Theorem, due to Zajac
(2018):

Let k > 3 be an integer and let G be a graph with A(G) < k. If G does not contain Ky, as a
subgraph then G is k-colourable.

We call this the “new” version of Brooks Theorem and prove that this implies Brooks Theorem.

Proof. Suppose that G is a graph which satisfies the assumptions of Brooks Theorem. That is,
G be a connected graph which is not an odd cycle and which is not complete. Let A = A(G) be
the maximum degree of G. We want to show that x(G) < A, as this is the conclusion required for
Brooks Theorem.

First suppose that A < 2. Then G is either a path or an even cycle, as G is connected. Hence G is
bipartite and so x(G) < 2 = A, as required.

Now suppose that A > 3. We wish to apply the new version of Brooks Theorem with £ = A, so
we must check that G does not contain Ka,; as a subgraph. For a contradiction, suppose that G
does have a subgraph H which is isomorphic to Ka,;. Then H is A-regular, and G has maximum
degree A, so there is no edge from a vertex of H to a vertex of G — V(H). It follows that H is a
component of G. But G is connected, so the only possibility is that G = H. BUt this contradicts
our assumption that G is not complete.

Therefore, GG satisfies the assumptions of the new version of Brooks Theorem, and by applying this
result we find that G is A-colourable. From this we conclude that x(G) < A, as required.

In both cases, the conclusion of Brooks Theorem holds, completing the proof. O

We now prove that this “new” version is true.

Proof. First an obversation, let G' be a graph with maximum degree A(G) < k, where {1,..., k}
will be our set of colours. Suppose that G is partially coloured. Let P = vjvy...v; be a path in G
such that all vertices of P are uncoloured. Then we can colour vertices vy, vs,...,v;_; in this order,
since at the moment that we colour v;(1 <1 < j — 1), we know that v;has an uncoloured neighbour
v;+1 and hence aat most A — 1 neighbours. Call this procedure PATHCOLOUR(v1, . .., vj_1;v;). Note
that this procedure colours vy,...,v;_; but it leaves v; uncoloured. In particular if j = 1 then
PATHCOLOUR(v;) leaves the graph unchanged.

17



Proof by induction on n = |G|, where G is a graph with A(G) < k and k& > 3. If n < k then we can
k-colour G by giving each vertex a distinct colour.

Claim. If G has a vertex of degree < k then G is k-colourable.

Proof. Let v be a vertex of degree < k and let G’ = G —v. By the inductive hypothesis
we can k-colour G’. Fix one such colouring C'. Then at most k — 1 colours are used by
C on neighbours of v, so we have an available colour which we can use to colour v.

Now we assume that G is k-regular. Let v be a vertex of G and consider G[{v}UN(v)]. Since G has
no subgraph isomorphic to Kj,1, we know that v has two neighbours x, y which are not adjacent. Let
v, = x,vy = v,v3 = ¥y, and extend the path v;vev3 to a maximal length path in G, P = vivvs. .. v,
which starts with vjvgvs.

Case 1. Suppose that = n. This means that all vertices of G lie on P (Hamilton
Path). Let v; be any neighbour of v, other than v, and vs. Since G is k-regular and
k > 3 we can choose such a vertex v;. We now describe how to k-colour G.

e First colour v; and vs the same colour.

e Next apply PATHCOLOUR(vy, vs, . .., v;_1; v;) which colours vy, ...,v;_1 and leaves v,
uncoloured.

e Next apply PATHCOLOUR(vp,, Up—1, - - . , Uj; U2) which will colour all remaining vertices
of G except vs.

e Finally we have an available colour for vy since two of its neighbour (v; and v3) have
the same colour. Colour v with an available colour.

Case 2. Now suppose that 7 < n. Recall that all neighbours of v, lie on P. Let v;
be the neighbour of v, with the smallest index. Then C = v;v;y;...v,v; is a cycle in
G. Let G = G — V(C). We can k-colour G’ by induction. If there is no edge between
G’ and C then we can also k-colour G[V(C)], by induction and we are done. Otherwise
(G[V(C)] is not a component of G): let vy be the vertex on C' with largest index which
has a neighbour in G’, and let u be a neighbour of v, in G'. Note, vy is well defined as v;
has a neighbour in G’ if j > 2. Note ¢ < r — 1 since all neighbours of v,belong to V (C).
Also vy, 1 has no neighbours outside C', by choice of v,. We now describe how to k-colour
vertices of C, giving a k-colouring of G.

e First, colour vy, with the colour assigned to w.

e Next, apply PATHCOLOUR(vg42, - - ., Ur, Uj, Vi1, - - - , Ug—1; Ug) Which colours all remain-
ing vertices of G except vy.

e Finally, colour v, with an available colour which exists because v, has two neighbours
with the same colour.

This completes thr proof in Case 2, by mathematical induction. O

4.2 Edge Colourings

By considering a vertex of maximum degree, we see that the chromatic index \/(G) satisfies x'(G) >
A(G)for all graphs G.
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Proposition 4.2.1 (Koénig, 1916). If G is bipartite then x'(G) = A(G).

Proof. We prove t his by induction on m = |E(G)|. If m = 0 then the result is trivially true. So,
assume that m > 1 and that the result holds for all bipartite graphs with at most m — 1 edges.

Let A = A(G), choose xy € E and let G’ = G — xy. By induction, we can fix a A-edge-colouring of
G'. We call edges coloured a, “a-edges”, etc. In G', vertices x,y both have degree A — 1. So there
are colours «, B € {1,2,...,A} such that z is not incident with an a-edge, and y is not incident
with a f-edge.

If & = B then we can colour the edge xy with colour « to give a A-edge-colouring of GG, and we are
done. Now assume that o # 5. Without loss of generality, we can assume that x is incident with a
[-edge xu. Extend the -edge xu to a maximal walk W whose edges are coloured «, 3 alternately.
Since no such walk can contain a vertex colour twice, W is a path.

Claim. W does not contain .

Proof. For a contradiction, suppose that y lies on W. Then y must be an endvertex of
W, and the edge of W incident with y must be an a-edge. Hence W has even length,
and so W + zy is an odd cycle in the bipartite graph G. This is a contradiction.

By maximality of W, we can swap the colours a and (5 on all edges of W. This gives a new A-edge-
colouring of G’ such that 5 does not appear on any edge incident with z. Since y does not lie on W,
there is still no $-edge incident with y. Flnally we can colour edge xy with colour g in G, giving a
A-edge-colouring of G. This completes the proof, by induction. m

Theorem 4.2.2 (Vizing, 1964). Every graph G satisfies

A(G) < X'(G) < A(G) + 1.
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Chapter 5

Connectivity

5.1 2-Connected Graphs

Let G be a graph. A maximal connected subgraph of G with no cut vertex is called a block. Every block
of GG is either a maximal 2-connected subgraph of G or a bridge or an isolated vertex.

By maximality, different blocks of G' overlap in at most one vertex, which must be a cut vertex in G.
Hence every edge of G lies in a unique block, and G is the union of its blocks.

Let A be the set of cut vertices in G and let B be the set of blocks in G. Form the bipartite graph on
AU B with edge set
{aB:a€ A B € Band a € B}.

Lemma 5.1.1. The block graph of a connected graph is a tree.
Let H be a subgraph of a graph G. An H-path is a path in G which intersects H only in its endvertices.

Proposition 5.1.2. A graph is 2-connected if and only if it can be constructed from a cycle by successively
adding H-paths to graphs H already constructed.

Proof. Every graph constructs in this way is 2-connected. Conversely, let G be 2-connected. Then
|G| > 3 and G contains a cycle. Hence G has a maximal subgraph H which is constructible using
the method described in the proposition stated.

If H = G, then we are done. For a contradiction, suppose that H # (. Since any edge
xy € E(G) — E(H) with z,y € H is an H-path, by maximality we see that every zy € E(G) with
x,y € H must belong to E(H). Hence, H is an induced subgraph of G.

By the fact that G is connected, there is an edge vw with v € G— H,w € H. Since G is 2-connected
we know that G — W is connected. Let P be the shortest path from v to H in G —w. Then wvP is a
H-path in GG, and H UwuvP is a larger constructible subgraph than H, contradicting the maximality
of H. O]

5.2 3-Connected Graphs
Let e = zy € E(G). Define the graph G/e = (V', E') where V' = (V — {z,y}) U {v.},
E' ={uw € E(G) : {u,w} U{z,y} =0} U{vw : 2w € E(G) or yw € E(G)}.
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We say that G/e is formed by contradicting the edge e in G. This creates a new vertex v, which replaces
the endvertices of e.

Lemma 5.2.1. Let G be a 3-connected graph with |G| > 5. Then G has an edge e such that G/e is
3-connected.

Proof. For a contradiction, suppose that no such edge exists. For any edge zy € E(G), the graph
G/xy is not 3-connected, but |G/zy| = |G| — 4 > 4 by assumption that |G| > 5. Hence G/xy has
a separating set S with |S| < 2. Since G is 3-connected, the contracted vertex v,, must belong
to S, and |S| = 2, or we would have a separating set in G with < 2 vertices. So there is some
z € V(G),z ¢ {x,y} such that S = {v,y, 2z}. Any two vertices separated in G/xy by S are also
separated in G by the set T = {z,vy, z}.

FACT: Since no proper subset of T separates G, by the 3-connectivity of GG, every vertex in 1" has a
neighbour in every component C' of G — T'.

Choose the edge xy, vertex z, and component C of G — {z,y, 2z} such that |C] is as small as
possible. Let v be a neighbour of z in €', which we know must exists by our FACT. By assumption,
G/zv is not 3-connected, and |G/zv| = |G| —1 > 4. Hence (by our earlier argument) there is a
vertex w ¢ {v, z} such that {v,w, z} separates G. Also by our FACT, every vertex in {v,w, z} has a
neighbour in every component of G — {v, w, z}.

Since x and y are adjacent, G — {z, v, w} has a component D such that DN {z,y} = 0. By our FACT
we know that v has a neighbour in D. Recall that v € C'in G — {z,y, z}. Since D is connected and
({v} U V(D)) N{z,y, z}, it follows that {v} UV (D) C V(C). Hence D is a proper subgraph of C,
as v ¢ V(D). Therefore |D| < |C|, contradicting the minimality of C'.

Hence G/e is 3-connected for some e € E(G). O

Reversing this, we can construct all 3-connected graphs starting with K, and “uncontracting” edges.

Theorem 5.2.2. A graph G is 3-connected if and only if there exists a sequence Gy, Gy, ..., G, of graphs
such that

(1) Go = K4 and GT = G,
(ii) Gis1 has an edge xy with degrees d(x),d(y) > 3 such that G; = G;41/zy, for i =0,...,r — 1.

5.3 Menger’s Theorem

A set S C V separating A from B in G is called an (A, B)-separator. This means that every (A, B)-path
intersects S, and in particular AN B C S.

Let P, Q be sets of disjoint (A, B)-paths in G. Say that Q exceeds P if the set of vertices in A which
belong to paths in P is a proper subset of the set of vertices in A which belong to paths in Q and similarly
for B.

If P =xyx; - x, then we write P,, for the subpath z - - - ; and we write x; P for the subpath ;2,41 - - - 7.

Theorem 5.3.1 (Menger’s Theorem, 1927). Let G = (V, E) be a graph and A, B C V. Then the minimum
number of vertices separating A from B in G equals the maximum number of disjoint (A, B)-paths in G.
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Proof. Let k = k(G, A, B) be the minimum number of vertices separating A and B in G. (That
is, k = |S| where S C V is a smallest (A, B)-separating set.) Then k is an upper bound on the
maximum number of disjoint (A, B)-paths or else we could not separate A and B by deleting any
set of k vertices. So it suffices to prove that a set of k disjoint (A, B)-paths exists. In fact, we will
prove a stronger statement:

If P is any set of < k disjoint (A, B)-paths, then there is a set Q of |P| + 1 disjoint
(A, B)-paths in G which exceeds P.

We will keep G and A fixed and let B vary, applying induction on the number of vertices in (Jp.p P.

Base Case: If P = () then [|Jpep P| = 0. We can let Q = {P} for any (A, B)-path P. Then Q
exceeds P.

Inductive Step: Let P be a set of < k disjoint (A, B)-paths, and By C B be the set of end vertices
of paths in P (“start vertices” are in A, “endvertices” are in B). Since |By| < k — 1, By is not an
(A, B)-separating set and hence there is an (A, B)-path in G — By. Call this (A4, B)-path R. So R
is disjoint from By. If R avoids all vertices in (Jp.p then Q@ = P U {R} exceeds P, as required.
Otherwise, let © be the last vertex of R (traversing R from A to B) that lies on some path P € P.
Note that x ¢ B, by choice of R, so Pz is shorter than P.

Let B = BUV(zPUzR) and let P’ = (P —{P})U{Pz}. Then P’ is a set of disjoint (A, B’)-paths.
Also |P’| = |P|, but the union of paths in P’ is strictly smaller than |Uﬁe7>p|- Also, B C B/,
so an (A, B')-separating set is also an (A, B)-separating set. Hence k(G, A, B") > k(G, A, B). So
P’ < k(G, A, B) < k(G, A, B"). Applying the inductive hypothesis to G, A, B',P’, we conclude that
there is a set Q' of |P| + 1 disjoint (A, B')-paths in G which exceeds P! Now Q' contains a path
(@ which ends in z, and a unique path @’ whose last vertex y is not among the last vertices of the
paths in P! In particular, y # x.

Case 1: y € B. If y € B, then define Q = (9’ — {Q}) U{QzP}

Case 2: y ¢ Bandy € zR. If y € xRandy ¢ B, then y ¢ zP, and we define
Q=(Q —{Q,Q})u{QzP,QyR}.

Case 3: y ¢ Bandy € zP. If y € xPandy ¢ then y ¢ xR, and we define Q =
(@ —{Q,Q}U{QzR,QyP}).

In all cases, @ is a set of |P|+ 1 disjoint (A, B)-paths which exceeds P, proving the inductive step.
Hence there is a set of k disjoint (A, B)-paths in G, as required. [l

Corollary 5.3.2. Let a, b be distinct vertices of G.

(i) If ab ¢ E then the minimum number of vertices (distinct from a and b) separating a from b is equal
to the maximum number independent (a, b)-paths in G.

(ii) The minimum number of edges separating a from b in G equals the maximum number of edge-disjoint

(a,b)-paths in G.

Proof.

(i) Apply Menger’s Theorem with A = N(A), B = N(b). Note that a set of k disjoint (A, B)-path
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corresponds to a set of independent (a, b)-paths by adding vertex a at the start and vertex b
to the end.

(ii) Apply Menger’s Theorem to the line graph L(G) of G with A = E(a), the set of edges of G
incident with a, B = E(b), the set of edges of G incident with b.

O

\. J

Theorem 5.3.3 (Global version of Menger’s Theorem).

(i) A graph is k-connected if and only if it has order at least 2 and there are k independent paths between
any two distinct vertices.

(ii) A graph is k-edge-connected if and only if it has at least two vertices and k edge-disjoint paths
between any two distinct vertices.

Proof.

(i) Suppose that G is a graph and |G| > 2. Now suppose that G has k independent paths between
any two distinct vertices a,b € V. Then |G| > k, as there are at least k — 1 paths of length
at least two between a and b. Also, G cannot be disconnected by deleting a set of < k — 1
vertices. Hence G is k-connected.

For the converse, suppose that GG is k-connected and assume for a contradiction that there are
distinct vertices a, b with at most &k — 1 independent (a, b)-paths. Since G is k-connected we
have |G| > k + 1. By Corollary 5.3.2, we must have ab € E. Let G’ = G — ab. Then G’ has at
most k — 2 independent (a, b)-paths. Hence by Corollary 5.3.2, there is an (a, b)-separating set
X CV with |X| <k —2. Since |G| > k + 1, there is at least one more vertex v ¢ X U {a,b}
in G. Now X separates v from at least one of a or b, say from a (since a,b lie in distinct
components of G' — X). But then X U {b} is a set of at most k — 1 vertices which separates v
from a in G. This contradicts the fact that G is k-connected.

Hence G has at least k independent (a, b)-paths in G, completing the proof.

(ii) Follows immediately from Corollary 5.3.2.
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Chapter 6

Planar Graphs

A graph which is drawn in the plane so that no edges meet except at common endvertices is called a plane
graph. An abstract graph which can be drawn in this way is called planar.

A graph is drawn in the Euclidean plane R? by representing each vertex by a point and each edge by a
curve between two distinct points.

6.1 Plane Graphs

An arc (or polygonal arc) is a subset of R? composed of the union of finitely many straight line segments,
which is homeomorphic to [0, 1].

A plane graph is a pair (V, E) of finite sets (with elements of V' called vertices and elements of E called
edges) such that

(i) V C R
(ii) Every edge is an arc between two distinct vertices (no loops);
(iii) Different edges have different sets of endvertices (no repeated edges);
(iv) The interior of an edge contains no vertex and no point of any other edge.

Here the interior of an edge/arc e, denoted é, is the arc minus its endpoints: if e is the arc from x to y
then ¢ = e — {z,y}.

A plane graph defines a graph G in a natural way. We use the name G for abstract graph, the plane

graph and the point set
Vu (U e) C R2.

eeE

The point set of a plane graph G is a closed set in R?, and R? — G is open. Two points in an open set O
are equivalent if they are equal or they can be linked by an arc in O. This is an equivalence relation.

The equivalence classes of R? — G are open connected regions, call the faces of G. Since G is bounded
(that is, it lies within some sufficiently large disc D C R?), exactly one face of G is unbounded: it is the

face that contains R? — D. We call the unbounded faces the outer face of G. All other faces of G are
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called inner faces.

Let F(G) be the set of faces of G. The boundary of a face f is called the frontier of f. It is the set of
all points y € R? such that every neighbourhood of y meets both f and R? — f.

Lemma 6.1.1. Let G be a plane graph with subgraph H C G and face f € F(G).
(i) There is a face f' € F(H) which contains f (that is, f C f').
(ii) If the frontier of f lies in H then f' = f.

Proof.

(i) Points in f are also equivalent in R? — H, so they belong to an equivalence class f” of R? — H.
That is, f C f' and f' € F(H).

(ii) We prove the contrapositive. Suppose that f is a proper subset of f'(f C f’). Choose points
a€ fand b€ f'— f. Both a and b belong to f in R? — H, so there is an arc between them in
R? — H.

But a and b are not equivalent in R? — G as a € f and b ¢ f. So the arc must meet a point x
on the frontier X of f, and x ¢ H as x € f' C R?> — H. Therefore X ¢ H.

]

Lemma 6.1.2. Let G be a plane graph and let e be an edge of G.
(i) If X is the frontier of a face of G then either e C X or X Ne = (.

(ii) If e lies on a cycle C' C G then e lies on the frontier of exactly two faces of G, and these are contained
in the distinct faces of C.

(iii) If e does not lie on a cycle then e lies on the frontier of exactly one face of G.
Corollary 6.1.3. The frontier of a face of a plane graph G is always the point set of a subgraph of G.

The subgraph of G whose point set is the frontier of a face f is said to bound f and is called the boundary
of f. Denote this subgraph by G[f]. A face is said to be incident with the vertices and edges of its
boundary. By Lemma 6.1.1 (ii), every face of G is also a face of it’s boundary.

Proposition 6.1.4. A plane forest has exactly one face.

Lemma 6.1.5. If a plane graph has two distinct faces with the same boundary then the graph is a cycle.

Proof. Let G be a plane graph and let fi, fo be distinct faces of G with the same boundary
H = G|f1] = G[fs]. Since fi, fo are also faces of H, the above proposition imples that H contains a
cycle C.

We claim H = C. For a contradiction, suppose that H has a vertex or edge which is not in C. This
additional vertex or edge of H lies in one of the faces of C' and hence cannot lie on the boundary of
whichever f; is contained in the other face of C.

Thus f; and f; are exactly the two distinct faces of C. Hence fi UC U fo = R% But ffUCU f, C
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fiUG U fy U {other faces of G} = R? and therefore G = C'. O

Proposition 6.1.6. In a 2-connected plane graph, every face is bounded by a cycle.

Proof. Let f be a face in a 2-connected plane graph GG. We proceed by induction using Proposition
5.1.2. If G is a cycle then the result is true. Now assume that G is not a cycle. Then by Proposition
5.1.2, there is a 2-connected plane subgraph H of G and a plane H-path P such that G = H U P.
By the inductive hypothesis, every face of H is bounded by a cycle.

The interior of P lies in the face f’ of H, and f’ is bounded by a cycle C. If f is a face of H then
we are done. Otherwise, the frontier of f intersects P — H, so f C f! Therefore f is a face of C U P
and hence f is bounded by a cycle, by observation. O

Theorem 6.1.7 (Euler’s Formula, 1752). Let G be a connected plane graph with n vertices, m edges and

¢ faces. Then
n—m-t¥0=2.

Proof. Fix n and apply induction on m. For m < n — 1 then, as G is connected we must have
m =n—1 and G is a tree. Then the result follows Proposition 6.1.4.

Now suppose that m > n. Then G has an edge e which belongs to a cycle. Let G’ = G —e which is a
connected plane graph. By Lemma 6.1.2 (ii), e lies on the boundary of exactly two distinct faces f;
and f, of G. There is a face f. of G’ which contains é, since all points of é are equivalent in R? — G'.

Claim. We claim the following result, F(G) — {f1, fo} = F(G") — {f.}.

Proof. First let f € F(G) — {f1, fo}. By Lemma 6.1.2 G[f] C G — ¢ = G’ and hence
f € F(G') by Lemma 6.1.2 (ii). Also f # f.asé C fobuténf=0. So f € F(G")—{f.}
proving “ C” part of the claim.

Next let f" € F(G') — {f.}. Then f" # fi,f> (as open sets): for any = € é, any open
set around z intersects both f; and f;. But there are open sets containing x which are
disjoint from f’, as é € f., f. open, f'and f. are disjoint.

Also f'ne =0 asé C f, and f, is disjoint from f’. Hence every pair of points in f’ belong
to R? — G, and they are equivalent in R? —G. Thus, G has a face f which contains f’. By
Lemma 6.1.2 (i), f is contained in a face f” of G’. Hence f' C f C f”. Therefore f' = f”

(faces of G' which overlap must be equal) and f' = f € F(G). So f' € F(G) — {f1, f2},
completing the proof of the claim.

Then G’ has exactly one less face and exactly one less edge than G. So the result for G follows by
the formula for G’, which holds by induction: n — (m — 1)+ ({ —1) = 2. O

Corollary 6.1.8. The graphs K5, K33 are not planar.

Proof. For a contradiction, suppose that Kj is planar. Any planar embedding of K5 must
have ¢ faces where 5 — 10 + ¢ = 2 by Euler’s Formula (note that K5 is connected). Rearranging
gives £ = 7. But Kj is 2-connected and hence every face is bounded by a cycle (of length at
least 3), by Proposition 6.1.6. Also, every edge of G lies on the boundary of exactly two faces,
as K5 has no bridges and using Lemma 6.1.2 (ii). We will double count elements of the set
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S={(e,f):e€ E(K5), f € F(Ks),e C G[f]} (incident edge-face pairs). We get 3¢ < |S| =2 x 10.
Hence ¢ < 20/3 < 7, contradiction. So K3 is not planar.

Similarly, as K33 is connected, any planar embedding of K3 3 would have ¢ faces, where 6 —9+/¢ = 2
by Eulers formula. So ¢ = 5. Also, every face is bounded by a cycle of length at least 4, as Kj3 is
2-connected and bipartite (using Proposition 6.1.6) and every edge is incident with exactly 2 faces,
as above.

Double counting incident (edge, face) pairs gives 4¢ < 2 x 9, so £ < % < 5. This contradiction shows
that K33 is not planar. O

A subdivision of a graph G is obtained by replacing each edge of G' by an independent path between its
endvertices.

Kuratowski’s Theorem (1930) says that a graph G is planar if and only if no subgraph of G is a
subdivision of K5 or Kj 3.

A plane graph G is maximally plane (or just maximal) if we cannot add a new edge to form a new
plane graph G' with V(G') = V(G) such that E(G’) strictly contains F(G).

Call G a plane triangulation if every face of G (including the outer face) is bounded by a triangle.

Proposition 6.1.9. A plane graph of order at least 3 is maximally plane if and only if it is a plane
triangulation.

Proof. Let G be a plane graph with |G| > 3. First suppose that G is a plane triangulation. Then
G is maximally plane, any additional edge e would have its interior completely within a face f of
G, and the endvertices of e would lie on the boundary of f. But all these edges are already present
as G[f] = K3 which is complete, and repeated edges are not allowed.

For the converse, suppose that G is maximally plane. Let f € F(G) be a face and let H = G[f].

Claim 1. The induced subgraph G[H] is complete. If not, say vertices =,y of G[H| are
not adjacent in GG. But we can add an edge through the face f between x and y, giving
a plane graph with more edges than G. This contradicts maximality of G.

Hence G[H| = K, for some r. Then r < 4 as Kj is not planar. Note: H might not be complete
(that is, it might not be a induced subgraph of G).

Claim 2. H contains a cycle. If not, then H is a forest. Either » > 3, and H C K, =
G[H] € G orr = 2 and |G| > 3 while |H| = r = 2. In either case, H # G. But by
Proposition 6.1.4, H has exactly one face f and hence f U H = R% Therefore G = H,
contradiction.

Claim 3. r = 3, and hence H = K5. We know that » < 4 and by Claim 2 we have
r > 3. So it is enough to rule out » = 4. For a contradiction, suppose that » = 4 and
let V(H) = {v1,vq,v3,v4}. Without loss of generality let C' = vjv9v3v4v1 be a cycle in H
(note, H contains a cycle by Claim 2: how do we know it is a 4-cycle?).

Since C' C G, by Lemma 6.1.1 (i), the face f is contained within a face f. of C. let f! be
the other face of C.
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FACT. Edges v,v3 and wvyvy lie in different faces of C'. If not, we can add a
new vertex u in the face of C' which does not contain these edges, and add
edges uvy, uvy, uvs, uvy giving a plane embedding of K5, contradiction.

But, since v; and wv3 lie on G[f], they can be linked by an arc whose interior lies in f,
which avoids G. Hence the plane edge vovy of G[H] goes through f! not f..

Similarly, since vy and vy lie on G[f], they can be linked by an arc whose interior lies in
fo and which avoids G. Hence the plane edge vjvg of G[H] runs through f/, not f.. This
contradicts our FACT. Hence r # 4 so r = 3 and Claim 3 holds.

So every face of G is bounded by a 3-cycle. m

Corollary 6.1.10. A plane graph with n > 3 vertices has at most 3n — 6 edges. Every plane triangulation
has 3n — 6 edges.

Proof. By Proposition 6.1.9 it suffices to prove the second statement. Let G be a plane triangu-
lation. If G was disconnected then at least one face of G must have a disconnected boundary. But
all faces of G are bounded by 3-cycles, so G is connected.

Next, every edge lies on the boundary of some face, which is a 3-cycle. So every edge of G belongs
to a cycle and hence lies on the boundary of exactly two faces. Furthermore, every face boundary
has exactly 3 edges. Let n = |G|,m = |E(G)| and ¢ = |F(G)|. Double-counting incident (edge -
face) pairs gives 3¢ = 2m. Thus ¢ = QTm Substituting this into Euler’s formula, as G is connected
gives n —m + 2 = 2. Hence m = 3(n — 2) = 3n — 6 as required. O

. J

6.2 Colouring Maps

Theorem 6.2.1 (Four Colour Theorem). Every planar graph is 4-colourable. (That is, there exists a
proper 4-colouring of the vertices of any planar graph.)

Proposition 6.2.2. Every planar graph is 5-colourable.

Proof. Let G be a plane graph with n vertices and m edges. If n < 5 then 5-colouring is easy. So
we assume that n > 6. Assume by induction that every plane graph with at most n — 1 vertices can
be 5-coloured. By Corollary 6.1.10, the average degree of GG satisfies

- 2_m<2(3n—6)

d(G) = < 6.

n n

Hence G has at least one vertex of degree < 5. Let v be a vertex of G with degree < 5. If dg(v) < 4
then by induction we can 5-colour G — v and extend this colouring to a 5-colouring of G by choosing
a colour for v which does not appear on N(v). So we can assume that dg(v) = 5.

Note, some pair of distinct neighbours u,w € N(v) must not be adjacent, as K5 is not planar.
Contract the edge uv and then contract the edge vw, preserving planarity. This gives a plane graph
G with n — 2 vertices. By induction, G is 5-colourable. Let ¢ be a 5-colouring of G. We define a
5-colouring ¢ of G — v by
. it
o(2) = {c(x) if o ¢ {u,w},

C(uwv) if x € {u, w}.
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Now at most 4 colours appear on N(v) under ¢, so we can colour v with a missing colour to give a
5-colouring of G. This completes the proof, by induction. O

Theorem 6.2.3. Every planar graph which does not contain a triangle is 3-colourable.
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Chapter 7

Ramsey Theory

For integers s,t > 2, let R(s,t) be the least positive integer n such that any red-blue colouring of K, has
either a red copy of K or a blue copy of K;.

The numbers R(s,t) are called Ramsey numbers. Write R(s) instead of R(s,s) (this is the diagonal
case).

7.1 Upper Bounds

Theorem 7.1.1 (Erdés & Szekeres, 1935). For all integers s,t > 2, the Ramsey number R(s,t) is finite.
If s> 2 and t > 2 then

R(s,t) < R(s—1,t)+ R(s,t — 1) (7.1)

and hence

R(s,t) < (8 i 2). (7.2)

s—1

Proof. We know that R(s,2) = R(2,s) for all s > 2. Assume by induction that R(s — 1,t)
and R(s,t — 1) are both finite. Let n = R(s — 1,t) + R(s,t — 1). Consider any red-blue colour-
ing of the edges of K,,. Let x be a vertex of K,,. Then x has degree n—1 = R(s—1,t)+R(s,t—1)—1.

By the pingeonhole principle, either
e there are at least ny = R(s — 1,t) red edges incident with x
e there are at least ny = R(s,t — 1) blue edges incident with x.

Without loss of generality, assume the former. Consider the subgraph K, spanned by a set of n,
vertices which are joined to x by red edges.

e If K, contains a blue copy of K; then we are done.
e Otherwise, K, contains a red copy of K 1, since n; = R(s — 1,¢).

Together with = this gives a red copy of K, completing the proof of (7.1). Then we use induction
on s+t to prove (7.2). O

30



7.2 Lower Bounds

Theorem 7.2.1 (Erdés, 1947). If (2)217(3) < 1 then R(s) > n. Hence R(s) > |2%2] for s > 3.

Proof. Take a random red-blue colouring of the edges of K,,, where each edge is coloured indepen-
dently red or blue, each with proability 1/2. For any fixed set R of s vertices, let Ag b e the event
that the induced subgraph K, [R] is monochromatic. Then, using independence,

Pr(Az) = (5)® + () =

since there are (3) edges in K,[R] and the events “all red” and “all blue” on K,[R] are disjoint.

Let X be the number of monochromatic copies of K, in the random red-blue colouring. Then
X =3 Rpein|rj=s AR, Where [n] = {1,2,...,n} = V(K,) and I(Ag) is the indicator variable for the
event Ag.

Hence, by linearity of expectation,
n\ 2
EX= Y EW(4r)= >  Pr(4,)= (s>ﬂ
RC[n],|R|=s RC[n],|R|=s 212

S

By the assumption we have EX = (TS‘) 91-(3) < 1. Therefore there is a fixed red-blue colouring of
the edges of K,, with no monochromatic copy of K. Hence R(s) > n. This proves the first statement.

Now suppose that s > 3 and n = [2%/2] = L\/§3J Then

n 1_(5) 21+S/2—32/2ns 21+5/2—52/2282/2 21+8/2
2T s = < <1
5 s! s! s!
(as n® < 25°/2 by choice of n) and this holds for s > 3. =

7.3 Graph Ramsey Theory

Let Hy, Hs be fixed graphs with no isolated vertices, and let R(H;, Hy) be the least positive integer n such
that in every red-blue colouring of the edges of K,,, then there is either a red copy of H; or a blue copy of Hs.

Write R(H) = R(H, H) and note that R(Kj, K;) = R(s,t), the Ramsey numbers.
Theorem 7.3.1. Write /K, for a set of ¢ independent edges. For £ > 1 and p > 2,

R((Ky, K,) =20 +p —2.

Proof. First consider Kooy, 3. We colour the edges of Ky4,_3 so that there is a red K51 and all
other edges are blue. Then we cannot find ¢ independent red edges as this would require 2¢ vertices
which are incident with red edges, but we only have 2¢ — 1. That is, there is no red copy of /K.

Next, the largest blue complete subgraph 2¢ + p — 3 — (2¢ — 2) = p — 1 vertices, noting that we
can keep exactly one vertex which is incident with a red edge. Hence there is no blue K, so
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Next, take any red-blue colouring of the edges of K,, where n = 2¢ + p — 2. If we can find a red
(K5 then we are done. So suppose that there are at most s independent red edges, where s < ¢ — 1.
Then the set of n —2s > 20+ p —2 — 2(¢ — 1) = p vertices which are not incident with these red
edges must span a blue complete subgraph: if not, we can find a larger red matching, contradicting
the definition of s.

Hence R((K>, K,) <20+ p— 2, so R({K5, K,) = 2(+ p — 2 as claimed. O

For a graph G, let ¢(G) be the number of vertices in the largest component of G, and let u(G) be the
chromatic surplus of GG, which is the maximum size of the smallest colour class of G, taken over all

X(G)-colourings of G. Note that u(Cy) = k and u(Cayq) = 1.

Theorem 7.3.2. For all graphs H;, Hy with no isolated vertices, we have
R(Hy, Hy) > (x(Hy) — 1)(c(Hz) — 1) 4 u(Hy).
In particular, if Hy is connected then

R(Hy, Hy) = (x(H1) = 1)([H2[ = 1) + 1.

Proof. Let k = x(H;),u =u(H;) and ¢ = ¢(H,). Then

R(Hy, Hs) > R(Hy, Ks) = |Hy| > x(H1)u(Hy) = ku.
Hence if ¢ < u then

R(H,Hy) > ku>(k—1Dc+u>(k—1)(c—1)+u,

as required. Now suppose that ¢ > u and let n = (k — 1)(¢ — 1) + u — 1. Partition the vertices of
K, into parts Ay, As, ..., Ay_1, B where |Aj| =c—1for j=1,...,k—1land |B| =u— 1.

Let K,[A;] be ablue K. foralli=1,...,k—1 and let K,[B] be a blue K,_;. Colour all remaining
edges red.

The largest component in Hy has order ¢, but the largest component of the blue subgraph of K,
has order ¢ — 1, since ¢ > u. Hence there is no blue copy of Hs.

Next, if there is a red copy of H; then the k-partite sets Ai,..., Ar_1, B induce a k-colouring
(proper vertex colouring) of H;. Furthermore, k& = x(H;) and the smallest colour class in this vertex
colouring contains u — 1 vertices, as u < ¢. But this contradicts the definition of v = w(H;). Hence
there is no red H; either, so R(Hy, Hy) >n. So R(Hy,Hs) >n+1=(k—1)(c—1)+u.

The second statement follows as u(H;) > 1 for all graphs H; with no isolated vertices, and ¢(Hs) =
|H,| if Hy is connected. O
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Chapter 8

Random Graphs

We define the uniform model of random graphs in a similar manner to what was done in the Probabilistic
Method chapter.

For some probability p € [0, 1], each pair of distinct vertices {i, j} let Pr(ij € E) = p independently for
each 7 # j. This gives a random graph model called the binomial model denoted G(n,p). Note G(n, %) is

the uniform model.

We write G € G(n,p) to mean that G is a random graph chosen from the binomial model. For a fixed
Gy € (,, the probability that the random graph G equals G is

Pr(G = Gy) = p\E(Go)I(l —p) (3)-1E(Go)|
which depends only on |E(Gy)| using independence.
For G € G(n,p), the expected number of edges of G is p(g)

For fixed p € [0, 1], we have a sequence of probability spaces,

(G(n,p))nez+-

We can also let p be a function of n, where p(n) € [0,1] for all n € Z*. This gives the sequence of
probability spaces

(G(n, p(n)))nez+-
Recall that w(G) is the clique number of G, and «(G) is the independence number of G.

Lemma 8.0.1. Let G € G(n,p). Then for any integer k > 2,

Pr(w(G) > k) < (Z)p@,
Pr(o(G) > k) < (“) (1—p)().

Proof. Let G € G(n,p). If G has a clique of order > k then G has a clique of order k. For a set S
of k vertices, let A be the event “G[S] is a clique”. Then Pr[A,] = p(g), using independence, since
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(g) edges within in S must be present. Hence

Pr(w(G) > k) = Pr U A | < Z Pr(A,) = <Z>p(§)

|S|=k 1S|=k

(using the union bound), the result as required. O

For a € R and r € N, let

denote the falling factorials.

Lemma 8.0.2. Let £ > 3 be an integer. The expected number of k-cycle in G € G(n,p) is

")k &

2k

Proof. Let X be the number of k-cycles in G € G(n,p). Given a sequence (v, vs,...,v;) of k
distinct vertices, the probability that this sequence describes a walk around a k-cycle is

Pr(v1v, Vg, Vs, . . ., Vg_10k, vxv1 € E(G)) = p*, using independence

There are (n); ways to choose this sequence of k distinct vertices. Each cycle in G corresponds to
exactly 2k such sequences corresponding to the choice of start vertex and direction.

(M)

Hence, by linearity of expectation, EX = ka , as claimed. O]

If Pr(GeP) — 1 as n — oo, for some graph property P, we say that G € P holds asymptotically

almost surely, abbreviated to “a.a.s.”.

Proposition 8.0.3. For fixed p € (0,1) and every graph H, a.a.s. G € G(n,p) has an induced subgraph

which is isomorphic to H.

Proof. Let k = |V(H)|. Suppose that n > k and let & C {1,2,...,n} be a fixed set of k vertices.
The probability that G[U] = H is some fixed constant » € (0,1) which depends only on H and P
but not on n.

Now we can find |7 ] disjoint sets of k vertices, Ui, ..., U »|, within V(G) = [n]. The probability
that none of U, ... ,U|z| induces a copy of His (1 — r)L%J, since the U; are disjoint and hence the
events G[U;| 2 H are independent of each other (for j =1,...,[%]).

But (1 —r)l#) — 0 as n — oo, since 1 —r € (0,1) and [}] — oo as n — oo. Hence a.a.s., one of
Ui, ... U= induces a copy of H. O

Given 4,5 € N, let P;; be the property that given any disjoint vertex set U, W with |U| < i and |W| < j,

the graph contains a vertex v € U U W that is adjacent to all vertices in U but none in W.

Lemma 8.0.4. For every constant p € (0,1) and all i,j € N, let G € G(n,p). Then a.a.s. G € Py;.
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Proof. Assume that n > i+ j + 1. For fixed disjoint set U,W C [n] and v € [n] — (U U W), the
probability that v is adjacent to all vertices of U and to no vertices of W is plUl(1—p)W > pi(1 —p)’
using independence. To simplify notation we write ¢ = 1 — p. Hence the probability that no such v
exists for the given sets U and W is

(1 — plVlgWhyn—tvi-wi

since these events are independent for distinct v € U UW (no edge/non-edge choices are considered
in more than one of these events). Now

(1 — POlgWIYn—IU-W] < (1 _ pigiyn=Ui-IW
< (1—p'g)" .
There are at most n"*2 pairs of disjoint sets U, W with |U| < i and |W]| < j, as
g g i+1 _ 1 .
() =t
s=0 § s=0 n—1

and similarly for W. Hence the probability that some U, W has no suitable v is at most
It (1 — ') w0 asn — 00

since 1 — p'q? € (0,1). Hence a.a.s. P;; holds, as required. O

Corollary 8.0.5. For every constant p € (0,1) and all k € N, a.a.s. G € G(n,p) is k-connected.

Proof. By Lemma 8.0.4, it is enough to show that every graph in P, j;_; is k-connected when n
is sufficiently large. Assume that n > k + 2 (one more than is needed for k-connectivity). Let W
be any set of at most £ — 1 vertices. We want to prove that G — W is still connected. So let x,y
be distinct vertices in [n] — W and define U = {z,y}. By definition of Py j_; there is a vertex v in
[n] — (U U W) such that v is adjacent to both x and y. Hence xzvy is a path between x and y in
G — W, proving that G — W is connected. O

Proposition 8.0.6. For every constant p € (0,1) and all € > 0, a.a.s. G € G(n,p) satisfies

In(1/q)n

X(G) = (2+€)lnn

where ¢ =1 — p.

Proof. Let a be any fixed integer, 2 < a < n. Then by Lemma 8.0.1

Pr(a(@) 2 o) < (7)1 - p)®)

<n*(1-p)t)

1 a(a—1)
— qaﬁ—i_ 2

21
_ )

2lnn
(a—1-ra/gy)

:q%
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Set a = [GL9m]  Thep

n(1/q)
a 2Inn
m = (a—1—- ") >
— (“ ln(l/q)) =

Hence Pr(a(G) > a) — 0o as n — oo, since ¢ € (0, 1).

(2+¢e)lnn [ elnn B ~
b 21n(1/q) (ln(l/Q) 1) B

This shows that a.a.s. (24¢)Inn

2+4€)Inn
a(G) < (1+(1)/

. Therefore a.a.s. for G € G(n,p),

n In(1/q)n
- 2+€e)lnn

G € G(n,p) has no independent set of order [ G / ) 1, and hence a.a.s.

]

Lemma 8.0.7. Let k£ be a positive integer and let p = p(n) be a function of n such that p(n) €

6kIlnn
p(n) >

n

for sufficiently large n. Then for G € G(n,p), a.a.s.

(0,1) and

since 1 —p < e7P. If p > %02 apd ¢ > 2 then

_p(r=1)
2

|
5
4
[S14S]

S 3

ne

®

g
[SISR N TUTR

IN

IA
S
ml

Since p = p(n) > 6’“% for sufficiently large n, we take r = [3-] to conclude that

lim Pr(a(G) > %) = lim Pr(a(G) > 1) =0.

n—o0 n—00

(since p < 1)
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Recall that the girth of a graph is the length of its smallest cycle and Markov’s inequality: if X : Q — N

is a nonnegative integer-valued random variable on a set €2, and k > 0, then

EX

Theorem 8.0.8 (Erdds, 1959). For every integer k > 3 there exists a graph H with girth g(H) > k and

chromatic number x(H) > k.

~

Proof. Fix ¢ with 0 < ¢ < ¢ and let p = p(n) = n“'. Let X(G) be the number of cycles in
G € G(n,p) with length < k. By Lemma 8.0.2 and linearity of expectation,

as np = n° > 1. Using Markov’s inequality

EX
Pr(X > g) <=2 < (b= 2Pl = (k — 2)nk I Dk = (k — 2)nkeL,
3

Note ke < 1 by choice of e. Hence
lim Pr(X > g) = 0.

n—oo
That is, a.a.s. X(G) < 2. Note also that, p = n° — 1 > %2 for Jarge enough n, as k is constant.
Hence by Lemma 8.0.7, we can choose n large enough so that

1 1
Pr(X > g) < 3 and Pr(a(G) > %) < o
This shows that for some fixed graph Gy on n vertices we have a(G) < 5 and G has fewer than
cycles of length < k. Construct H from G by deleting one vertex from every cycle in Gq of length
< k. Then |H| > % and by construction, g(H) > k.

Also a(H) < a(Gy) < g since every independent set in H is also an independent set in G. Therefore

| H]| 2 2
a(H) ~ ofH) 55

completing the proof. O

=

37
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